Your browser doesn't support javascript.
loading
Discovery of a Ni2+-dependent guanidine hydrolase in bacteria.
Funck, D; Sinn, M; Fleming, J R; Stanoppi, M; Dietrich, J; López-Igual, R; Mayans, O; Hartig, J S.
Afiliación
  • Funck D; Department of Chemistry, University of Konstanz, Konstanz, Germany.
  • Sinn M; Department of Chemistry, University of Konstanz, Konstanz, Germany.
  • Fleming JR; Department of Biology, University of Konstanz, Konstanz, Germany.
  • Stanoppi M; Department of Chemistry, University of Konstanz, Konstanz, Germany.
  • Dietrich J; Department of Chemistry, University of Konstanz, Konstanz, Germany.
  • López-Igual R; Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and C.S.I.C, Seville, Spain.
  • Mayans O; Department of Biology, University of Konstanz, Konstanz, Germany.
  • Hartig JS; Konstanz Graduate School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany.
Nature ; 603(7901): 515-521, 2022 Mar.
Article en En | MEDLINE | ID: mdl-35264792
Nitrogen availability is a growth-limiting factor in many habitats1, and the global nitrogen cycle involves prokaryotes and eukaryotes competing for this precious resource. Only some bacteria and archaea can fix elementary nitrogen; all other organisms depend on the assimilation of mineral or organic nitrogen. The nitrogen-rich compound guanidine occurs widely in nature2-4, but its utilization is impeded by pronounced resonance stabilization5, and enzymes catalysing hydrolysis of free guanidine have not been identified. Here we describe the arginase family protein GdmH (Sll1077) from Synechocystis sp. PCC 6803 as a Ni2+-dependent guanidine hydrolase. GdmH is highly specific for free guanidine. Its activity depends on two accessory proteins that load Ni2+ instead of the typical Mn2+ ions into the active site. Crystal structures of GdmH show coordination of the dinuclear metal cluster in a geometry typical for arginase family enzymes and allow modelling of the bound substrate. A unique amino-terminal extension and a tryptophan residue narrow the substrate-binding pocket and identify homologous proteins in further cyanobacteria, several other bacterial taxa and heterokont algae as probable guanidine hydrolases. This broad distribution suggests notable ecological relevance of guanidine hydrolysis in aquatic habitats.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Synechocystis / Hidrolasas Tipo de estudio: Prognostic_studies Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Synechocystis / Hidrolasas Tipo de estudio: Prognostic_studies Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Alemania