Your browser doesn't support javascript.
loading
High-Resolution Single-Molecule Magnetic Tweezers.
Choi, Hyun-Kyu; Kim, Hyun Gyu; Shon, Min Ju; Yoon, Tae-Young.
Afiliación
  • Choi HK; Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.
  • Kim HG; School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea; email: tyyoon@snu.ac.kr.
  • Shon MJ; Department of Physics and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science & Technology (POSTECH), Pohang, South Korea; email: mjshon@postech.ac.kr.
  • Yoon TY; School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea; email: tyyoon@snu.ac.kr.
Annu Rev Biochem ; 91: 33-59, 2022 06 21.
Article en En | MEDLINE | ID: mdl-35287472
ABSTRACT
Single-molecule magnetic tweezers deliver magnetic force and torque to single target molecules, permitting the study of dynamic changes in biomolecular structures and their interactions. Because the magnetic tweezer setups can generate magnetic fields that vary slowly over tens of millimeters-far larger than the nanometer scale of the single molecule events being observed-this technique can maintain essentially constant force levels during biochemical experiments while generating a biologically meaningful force on the order of 1-100 pN. When using bead-tether constructs to pull on single molecules, smaller magnetic beads and shorter submicrometer tethers improve dynamic response times and measurement precision. In addition, employing high-speed cameras, stronger light sources, and a graphics programming unit permits true high-resolution single-molecule magnetic tweezers that can track nanometer changes in target molecules on a millisecond or even submillisecond time scale. The unique force-clamping capacity of the magnetic tweezer technique provides a way to conduct measurements under near-equilibrium conditions and directly map the energy landscapes underlying various molecular phenomena. High-resolution single-molecule magnetic tweezerscan thus be used to monitor crucial conformational changes in single-protein molecules, including those involved in mechanotransduction and protein folding.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ADN / Mecanotransducción Celular Idioma: En Revista: Annu Rev Biochem Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ADN / Mecanotransducción Celular Idioma: En Revista: Annu Rev Biochem Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos