Your browser doesn't support javascript.
loading
EPIMUTESTR: a nearest neighbor machine learning approach to predict cancer driver genes from the evolutionary action of coding variants.
Parvandeh, Saeid; Donehower, Lawrence A; Panagiotis, Katsonis; Hsu, Teng-Kuei; Asmussen, Jennifer K; Lee, Kwanghyuk; Lichtarge, Olivier.
Afiliación
  • Parvandeh S; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
  • Donehower LA; Department of Molecular Virology and Microbiology, Houston, TX 77030, USA.
  • Panagiotis K; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.
  • Hsu TK; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
  • Asmussen JK; Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
  • Lee K; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
  • Lichtarge O; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
Nucleic Acids Res ; 50(12): e70, 2022 07 08.
Article en En | MEDLINE | ID: mdl-35412634
Discovering rare cancer driver genes is difficult because their mutational frequency is too low for statistical detection by computational methods. EPIMUTESTR is an integrative nearest-neighbor machine learning algorithm that identifies such marginal genes by modeling the fitness of their mutations with the phylogenetic Evolutionary Action (EA) score. Over cohorts of sequenced patients from The Cancer Genome Atlas representing 33 tumor types, EPIMUTESTR detected 214 previously inferred cancer driver genes and 137 new candidates never identified computationally before of which seven genes are supported in the COSMIC Cancer Gene Census. EPIMUTESTR achieved better robustness and specificity than existing methods in a number of benchmark methods and datasets.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aprendizaje Automático / Neoplasias Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aprendizaje Automático / Neoplasias Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos