Your browser doesn't support javascript.
loading
Transcriptomic mapping uncovers Purkinje neuron plasticity driving learning.
Chen, Xiaoying; Du, Yanhua; Broussard, Gerard Joey; Kislin, Mikhail; Yuede, Carla M; Zhang, Shuwei; Dietmann, Sabine; Gabel, Harrison; Zhao, Guoyan; Wang, Samuel S-H; Zhang, Xiaoqing; Bonni, Azad.
Afiliación
  • Chen X; Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA.
  • Du Y; Department of Neurology, Hope Center for Neurological Disorders,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
  • Broussard GJ; Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China.
  • Kislin M; Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ, USA.
  • Yuede CM; Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ, USA.
  • Zhang S; Department of Neurology, Washington University School of Medicine, St Louis, MO, USA.
  • Dietmann S; Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China.
  • Gabel H; Developmental Biology, Washington University School of Medicine, St Louis, MO, USA.
  • Zhao G; Insitute for Informatics, Washington University School of Medicine, St Louis, MO, USA.
  • Wang SS; Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA.
  • Zhang X; Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA.
  • Bonni A; Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ, USA. sswang@princeton.edu.
Nature ; 605(7911): 722-727, 2022 05.
Article en En | MEDLINE | ID: mdl-35545673
ABSTRACT
Cellular diversification is critical for specialized functions of the brain including learning and memory1. Single-cell RNA sequencing facilitates transcriptomic profiling of distinct major types of neuron2-4, but the divergence of transcriptomic profiles within a neuronal population and their link to function remain poorly understood. Here we isolate nuclei tagged5 in specific cell types followed by single-nucleus RNA sequencing to profile Purkinje neurons and map their responses to motor activity and learning. We find that two major subpopulations of Purkinje neurons, identified by expression of the genes Aldoc and Plcb4, bear distinct transcriptomic features. Plcb4+, but not Aldoc+, Purkinje neurons exhibit robust plasticity of gene expression in mice subjected to sensorimotor and learning experience. In vivo calcium imaging and optogenetic perturbation reveal that Plcb4+ Purkinje neurons have a crucial role in associative learning. Integrating single-nucleus RNA sequencing datasets with weighted gene co-expression network analysis uncovers a learning gene module that includes components of FGFR2 signalling in Plcb4+ Purkinje neurons. Knockout of Fgfr2 in Plcb4+ Purkinje neurons in mice using CRISPR disrupts motor learning. Our findings define how diversification of Purkinje neurons is linked to their responses in motor learning and provide a foundation for understanding their differential vulnerability to neurological disorders.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células de Purkinje / Transcriptoma Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células de Purkinje / Transcriptoma Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos