Your browser doesn't support javascript.
loading
mRNA and tRNA modification states influence ribosome speed and frame maintenance during poly(lysine) peptide synthesis.
Smith, Tyler J; Tardu, Mehmet; Khatri, Hem Raj; Koutmou, Kristin S.
Afiliación
  • Smith TJ; Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
  • Tardu M; Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
  • Khatri HR; Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
  • Koutmou KS; Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA. Electronic address: kkoutmou@umich.edu.
J Biol Chem ; 298(6): 102039, 2022 06.
Article en En | MEDLINE | ID: mdl-35595100
Ribosome speed is dictated by multiple factors including substrate availability, cellular conditions, and product (peptide) formation. Translation slows during the synthesis of cationic peptide sequences, potentially influencing the expression of thousands of proteins. Available evidence suggests that ionic interactions between positively charged nascent peptides and the negatively charged ribosome exit tunnel impede translation. However, this hypothesis was difficult to test directly because of inability to decouple the contributions of amino acid charge from mRNA sequence and tRNA identity/abundance in cells. Furthermore, it is unclear if other components of the translation system central to ribosome function (e.g., RNA modification) influence the speed and accuracy of positively charged peptide synthesis. In this study, we used a fully reconstituted Escherichia coli translation system to evaluate the effects of peptide charge, mRNA sequence, and RNA modification status on the translation of lysine-rich peptides. Comparison of translation reactions on poly(lysine)-encoding mRNAs conducted with either Lys-tRNALys or Val-tRNALys reveals that that amino acid charge, while important, only partially accounts for slowed translation on these transcripts. We further find that in addition to peptide charge, mRNA sequence and both tRNA and mRNA modification status influence the rates of amino acid addition and the ribosome's ability to maintain frame (instead of entering the -2, -1, and +1 frames) during poly(lysine) peptide synthesis. Our observations lead us to expand the model for explaining how the ribosome slows during poly(lysine) peptide synthesis and suggest that posttranscriptional RNA modifications can provide cells a mechanism to precisely control ribosome movements along an mRNA.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biosíntesis de Péptidos / Polilisina / Ribosomas / ARN Mensajero / ARN de Transferencia Tipo de estudio: Prognostic_studies Idioma: En Revista: J Biol Chem Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biosíntesis de Péptidos / Polilisina / Ribosomas / ARN Mensajero / ARN de Transferencia Tipo de estudio: Prognostic_studies Idioma: En Revista: J Biol Chem Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos