Your browser doesn't support javascript.
loading
enrichMiR predicts functionally relevant microRNAs based on target collections.
Soutschek, Michael; Germade, Tomás; Germain, Pierre-Luc; Schratt, Gerhard.
Afiliación
  • Soutschek M; Lab of Systems Neuroscience, D-HEST Institute for Neuroscience, ETH Zürich, Switzerland.
  • Germade T; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland.
  • Germain PL; Lab of Systems Neuroscience, D-HEST Institute for Neuroscience, ETH Zürich, Switzerland.
  • Schratt G; Lab of Systems Neuroscience, D-HEST Institute for Neuroscience, ETH Zürich, Switzerland.
Nucleic Acids Res ; 50(W1): W280-W289, 2022 07 05.
Article en En | MEDLINE | ID: mdl-35609985
MicroRNAs (miRNAs) are small non-coding RNAs that are among the main post-transcriptional regulators of gene expression. A number of data collections and prediction tools have gathered putative or confirmed targets of these regulators. It is often useful, for discovery and validation, to harness such collections to perform target enrichment analysis in given transcriptional signatures or gene-sets in order to predict involved miRNAs. While several methods have been proposed to this end, a flexible and user-friendly interface for such analyses using various approaches and collections is lacking. enrichMiR (https://ethz-ins.org/enrichMiR/) addresses this gap by enabling users to perform a series of enrichment tests, based on several target collections, to rank miRNAs according to their likely involvement in the control of a given transcriptional signature or gene-set. enrichMiR results can furthermore be visualised through interactive and publication-ready plots. To guide the choice of the appropriate analysis method, we benchmarked various tests across a panel of experiments involving the perturbation of known miRNAs. Finally, we showcase enrichMiR functionalities in a pair of use cases.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / MicroARNs Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nucleic Acids Res Año: 2022 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / MicroARNs Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nucleic Acids Res Año: 2022 Tipo del documento: Article País de afiliación: Suiza