Your browser doesn't support javascript.
loading
Copolymerization of Natural Camphor-Derived Rigid Diol with Various Dicarboxylic Acids: Access to Biobased Polyesters with Various Properties.
Pang, Chengcai; Jiang, Xueshuang; Yu, Yan; Chen, Li; Ma, Jianbiao; Gao, Hui.
Afiliación
  • Pang C; School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China.
  • Jiang X; School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China.
  • Yu Y; School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China.
  • Chen L; School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China.
  • Ma J; School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China.
  • Gao H; School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China.
ACS Macro Lett ; 8(11): 1442-1448, 2019 Nov 19.
Article en En | MEDLINE | ID: mdl-35651189
In this work, alicyclic (1R,3S)-1,2,2-trimethylcyclopentane-1,3-dimethanol (TCDM), derived from natural camphor, was copolymerized with linear α,ω-diacids, terephthalic acid (TPA), and 2,5-furandicarboxylic acid (FDCA), affording a series of polyesters with functional properties. 2D NMR spectroscopy revealed that the stereoconfiguration of TCDM was preserved after polymerization. The TCDM polyester based on TPA showed high thermostability, high Tg value (115 °C), high modulus (1.3 GPa), and high ultimate strength (29.8 MPa). The TCDM polyester based on 1,4-succinic acid exhibited excellent ductility and resilience. Lastly, the rigidity analysis based on van Krevelen's group contribution method, coupled with the comparisons between TCDM- and sugar-based polyesters, confirmed that TCDM is a highly reactive and rigid diol. Results indicate that TCDM polyesters are suitable for a wide range of applications, including hot-filled containers and transparent packaging materials. This work addresses some critical needs for high performance biopolymers such as achieving high Tg values, high thermostability, and high transparency.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Macro Lett Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Macro Lett Año: 2019 Tipo del documento: Article País de afiliación: China