Your browser doesn't support javascript.
loading
The cellular function of ROP GTPase prenylation is important for multicellularity in the moss Physcomitrium patens.
Bao, Liang; Ren, Junling; Nguyen, Mary; Slusarczyk, Arkadiusz Slawomir; Thole, Julie M; Martinez, Susana Perez; Huang, Jinling; Fujita, Tomomichi; Running, Mark P.
Afiliación
  • Bao L; Department of Biology, University of Louisville, Louisville, KY 40208, USA.
  • Ren J; Department of Biology, University of Louisville, Louisville, KY 40208, USA.
  • Nguyen M; Department of Biology, University of Louisville, Louisville, KY 40208, USA.
  • Slusarczyk AS; Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY 40202, USA.
  • Thole JM; Department of Biology, Saint Louis University, St Louis, MO 63103, USA.
  • Martinez SP; Department of Biology, University of Louisville, Louisville, KY 40208, USA.
  • Huang J; Department of Biology, East Carolina University, Greenville, NC 27858.
  • Fujita T; Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
  • Running MP; Department of Biology, University of Louisville, Louisville, KY 40208, USA.
Development ; 149(12)2022 06 15.
Article en En | MEDLINE | ID: mdl-35660859
ABSTRACT
A complete picture of how signaling pathways lead to multicellularity is largely unknown. Previously, we generated mutations in a protein prenylation enzyme, GGB, and showed that it is essential for maintaining multicellularity in the moss Physcomitrium patens. Here, we show that ROP GTPases act as downstream factors that are prenylated by GGB and themselves play an important role in the multicellularity of P. patens. We also show that the loss of multicellularity caused by the suppression of GGB or ROP GTPases is due to uncoordinated cell expansion, defects in cell wall integrity and the disturbance of the directional control of cell plate orientation. Expressing prenylatable ROP in the ggb mutant not only rescues multicellularity in protonemata but also results in development of gametophores. Although the prenylation of ROP is important for multicellularity, a higher threshold of active ROP is required for gametophore development. Thus, our results suggest that ROP activation via prenylation by GGB is a key process at both cell and tissue levels, facilitating the developmental transition from one dimension to two dimensions and to three dimensions in P. patens.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bryopsida / GTP Fosfohidrolasas Idioma: En Revista: Development Asunto de la revista: BIOLOGIA / EMBRIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bryopsida / GTP Fosfohidrolasas Idioma: En Revista: Development Asunto de la revista: BIOLOGIA / EMBRIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos