Rapid Eye Movement Sleep Deprivation Enhances Adenosine Receptor Activation and the CREB1/YAP1/c-Myc Axis to Alleviate Depressive-like Behaviors in Rats.
ACS Chem Neurosci
; 13(15): 2298-2308, 2022 08 03.
Article
en En
| MEDLINE
| ID: mdl-35838172
As neuromodulators, adenosine and its receptors are mediators of sleep-wake regulation. A putative correlation between CREB1 and depression has been predicted in our bioinformatics analyses, and its expression was also predicted to be upregulated in response to sleep deprivation. Therefore, this study aims to elaborate the A1 and A2A adenosine receptors and CREB1-associated mechanism underlying the antidepressant effect of rapid eye movement sleep deprivation (REMSD) in rats with chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors. The modeled rats were injected with adenosine A1 receptor antagonist DPCPX or adenosine A2A receptor antagonist ZM241385 to assess the role of adenosine receptors in depression. In addition, ectopic expression and depletion experiments of CREB1 and YAP1 were also conducted in vivo and in vitro. It was found that REMSD alleviated depressive-like behaviors in CUMS rats, as shown by increased spontaneous activity, sucrose consumption and percentage, and shortened escape latency and immobility duration. Meanwhile, A1 or A2A adenosine receptor antagonists negated the antidepressant effect of REMSD. REMSD enhanced adenosine receptor activation and promoted the phosphorylation of CREB1, thus increasing the expression of CREB1. In addition, the overexpression of CREB1 activated the YAP1/c-Myc axis and consequently alleviated depressive-like behaviors. Collectively, our results provide new mechanistic insights for an understanding of the antidepressant effect of REMSD, which is associated with the activation of adenosine receptors and the CREB1/YAP1/c-Myc axis.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Privación de Sueño
/
Sueño REM
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
ACS Chem Neurosci
Año:
2022
Tipo del documento:
Article