Your browser doesn't support javascript.
loading
Deep Local Analysis evaluates protein docking conformations with locally oriented cubes.
Mohseni Behbahani, Yasser; Crouzet, Simon; Laine, Elodie; Carbone, Alessandra.
Afiliación
  • Mohseni Behbahani Y; Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris 75005, France.
  • Crouzet S; Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris 75005, France.
  • Laine E; Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris 75005, France.
  • Carbone A; Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris 75005, France.
Bioinformatics ; 38(19): 4505-4512, 2022 09 30.
Article en En | MEDLINE | ID: mdl-35962985
MOTIVATION: With the recent advances in protein 3D structure prediction, protein interactions are becoming more central than ever before. Here, we address the problem of determining how proteins interact with one another. More specifically, we investigate the possibility of discriminating near-native protein complex conformations from incorrect ones by exploiting local environments around interfacial residues. RESULTS: Deep Local Analysis (DLA)-Ranker is a deep learning framework applying 3D convolutions to a set of locally oriented cubes representing the protein interface. It explicitly considers the local geometry of the interfacial residues along with their neighboring atoms and the regions of the interface with different solvent accessibility. We assessed its performance on three docking benchmarks made of half a million acceptable and incorrect conformations. We show that DLA-Ranker successfully identifies near-native conformations from ensembles generated by molecular docking. It surpasses or competes with other deep learning-based scoring functions. We also showcase its usefulness to discover alternative interfaces. AVAILABILITY AND IMPLEMENTATION: http://gitlab.lcqb.upmc.fr/dla-ranker/DLA-Ranker.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas Tipo de estudio: Prognostic_studies Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas Tipo de estudio: Prognostic_studies Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Francia