Your browser doesn't support javascript.
loading
Imaging the Breakdown of Ohmic Transport in Graphene.
Jenkins, Alec; Baumann, Susanne; Zhou, Haoxin; Meynell, Simon A; Daipeng, Yang; Watanabe, Kenji; Taniguchi, Takashi; Lucas, Andrew; Young, Andrea F; Bleszynski Jayich, Ania C.
Afiliación
  • Jenkins A; Department of Physics, University of California, Santa Barbara California 93106, USA.
  • Baumann S; Department of Physics, University of California, Santa Barbara California 93106, USA.
  • Zhou H; Department of Physics, University of California, Santa Barbara California 93106, USA.
  • Meynell SA; Department of Physics, University of California, Santa Barbara California 93106, USA.
  • Daipeng Y; Department of Physics, University of California, Santa Barbara California 93106, USA.
  • Watanabe K; Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.
  • Taniguchi T; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.
  • Lucas A; Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder Colorado 80309 USA.
  • Young AF; Department of Physics, University of California, Santa Barbara California 93106, USA.
  • Bleszynski Jayich AC; Department of Physics, University of California, Santa Barbara California 93106, USA.
Phys Rev Lett ; 129(8): 087701, 2022 Aug 19.
Article en En | MEDLINE | ID: mdl-36053708
ABSTRACT
Ohm's law describes the proportionality of the current density and electric field. In solid-state conductors, Ohm's law emerges due to electron scattering processes that relax the electrical current. Here, we use nitrogen-vacancy center magnetometry to directly image the local breakdown of Ohm's law in a narrow constriction fabricated in a high mobility graphene monolayer. Ohmic flow is visible at room temperature as current concentration on the constriction edges, with flow profiles entirely determined by sample geometry. However, as the temperature is lowered below 200 K, the current concentrates near the constriction center. The change in the flow pattern is consistent with a crossover from diffusive to viscous electron transport dominated by electron-electron scattering processes that do not relax current.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos