Discovery and molecular elucidation of the anti-influenza material basis of Banlangen granules based on biological activities and ultra-high performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry.
J Ethnopharmacol
; 298: 115683, 2022 Nov 15.
Article
en En
| MEDLINE
| ID: mdl-36057409
ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) has a wide range of applications, including human healthcare-associated treatments and bioactive compound discovery. However, complex chemical systems present a significant challenge for chemical-material-based research and quality control. For instance, Banlangen (BLG) granules is a well-acknowledged TCM preparation widely used in clinical treatment of virus infection. However, its chemical basis of anti-influenza efficacy remains unclear. AIM OF THE STUDY: In the present study, a systematic discovery strategy for identifying anti-influenza molecules based on biological activities and chemical analysis was established to contribute to the molecular elucidation of the anti-influenza material basis of Banlangen granules. MATERIALS AND METHODS: Hemagglutinase inhibition (HAI) and neuraminidase inhibition (NAI) assays were used to compare the anti-influenza activities of different fractions of BLG granules against H1N1, H5N1 and H7N9 viruses. A comparative qualitative analysis of the chemical constituents in BLG granules and their fractions was performed using ultra-high-performance liquid chromatography coupled with quadrupole orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap MS), in which a multiple mass spectrometry database platform and three compound identification strategies were used. The association between anti-influenza activities and chemical constituent characteristics was analyzed using multiple stoichiometries and data comparison strategies. RESULTS: The results showed that the chromatography fractions F3 and F4 of the BLG granules had the highest anti-influenza activity. A total of 88 compounds were identified in the BLG granules, including 31 alkaloids, 16 organic acids, 10 nucleosides, 8 phenylpropanoids, 6 sulfur-containing compounds, 5 amino acids, 4 aromatic compounds, 3 aldehydes and ketones, 2 flavonoids, 1 alcohol, 1 carbohydrate, and 1 aliphatic compound. Out of these, 31 characteristic compounds were identified in fractions F3-F4 as candidate compounds with anti-influenza activity. Additionally, 6-methoxyquinoline and 4-guanidinobutanal were identified in BLG granules and its raw material (Isatidis Radix) for the first time. CONCLUSION: In this study, we proposed a systematic discovery strategy to thoroughly investigate the anti-influenza activity, chemical identification, and constituents-activity relationship of BLG granules. These data not only provided a deeper understanding of the molecular mechanism of the activity of BLG granules, but also presented a basis for the discovery of potential novel drug candidates and quality evaluation and control of BLG granules.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Medicamentos Herbarios Chinos
/
Subtipo H1N1 del Virus de la Influenza A
/
Subtipo H5N1 del Virus de la Influenza A
/
Subtipo H7N9 del Virus de la Influenza A
Tipo de estudio:
Prognostic_studies
/
Qualitative_research
Límite:
Humans
Idioma:
En
Revista:
J Ethnopharmacol
Año:
2022
Tipo del documento:
Article