Your browser doesn't support javascript.
loading
The role of machine learning in developing non-magnetic resonance imaging based biomarkers for multiple sclerosis: a systematic review.
Hossain, Md Zakir; Daskalaki, Elena; Brüstle, Anne; Desborough, Jane; Lueck, Christian J; Suominen, Hanna.
Afiliación
  • Hossain MZ; School of Computing, College of Engineering and Computer Science, Australian National University, Canberra, ACT, Australia. zakir.hossain@anu.edu.au.
  • Daskalaki E; School of Computing, College of Engineering and Computer Science, Australian National University, Canberra, ACT, Australia.
  • Brüstle A; The John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, ACT, Australia.
  • Desborough J; Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, Australian National University, Canberra, ACT, Australia.
  • Lueck CJ; Department of Neurology, Canberra Hospital, Canberra, ACT, Australia.
  • Suominen H; ANU Medical School, College of Health and Medicine, Australian National University, Canberra, ACT, Australia.
BMC Med Inform Decis Mak ; 22(1): 242, 2022 09 15.
Article en En | MEDLINE | ID: mdl-36109726
BACKGROUND: Multiple sclerosis (MS) is a neurological condition whose symptoms, severity, and progression over time vary enormously among individuals. Ideally, each person living with MS should be provided with an accurate prognosis at the time of diagnosis, precision in initial and subsequent treatment decisions, and improved timeliness in detecting the need to reassess treatment regimens. To manage these three components, discovering an accurate, objective measure of overall disease severity is essential. Machine learning (ML) algorithms can contribute to finding such a clinically useful biomarker of MS through their ability to search and analyze datasets about potential biomarkers at scale. Our aim was to conduct a systematic review to determine how, and in what way, ML has been applied to the study of MS biomarkers on data from sources other than magnetic resonance imaging. METHODS: Systematic searches through eight databases were conducted for literature published in 2014-2020 on MS and specified ML algorithms. RESULTS: Of the 1, 052 returned papers, 66 met the inclusion criteria. All included papers addressed developing classifiers for MS identification or measuring its progression, typically, using hold-out evaluation on subsets of fewer than 200 participants with MS. These classifiers focused on biomarkers of MS, ranging from those derived from omics and phenotypical data (34.5% clinical, 33.3% biological, 23.0% physiological, and 9.2% drug response). Algorithmic choices were dependent on both the amount of data available for supervised ML (91.5%; 49.2% classification and 42.3% regression) and the requirement to be able to justify the resulting decision-making principles in healthcare settings. Therefore, algorithms based on decision trees and support vector machines were commonly used, and the maximum average performance of 89.9% AUC was found in random forests comparing with other ML algorithms. CONCLUSIONS: ML is applicable to determining how candidate biomarkers perform in the assessment of disease severity. However, applying ML research to develop decision aids to help clinicians optimize treatment strategies and analyze treatment responses in individual patients calls for creating appropriate data resources and shared experimental protocols. They should target proceeding from segregated classification of signals or natural language to both holistic analyses across data modalities and clinically-meaningful differentiation of disease.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Esclerosis Múltiple Tipo de estudio: Guideline / Prognostic_studies / Systematic_reviews Límite: Humans Idioma: En Revista: BMC Med Inform Decis Mak Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Esclerosis Múltiple Tipo de estudio: Guideline / Prognostic_studies / Systematic_reviews Límite: Humans Idioma: En Revista: BMC Med Inform Decis Mak Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Australia