Your browser doesn't support javascript.
loading
Prediction of rectal temperature in Holstein heifers using infrared thermography, respiration frequency, and climatic variables.
Theusme, Chilove; Avendaño-Reyes, Leonel; Macías-Cruz, Ulises; Castañeda-Bustos, Vielka; García-Cueto, Rafael; Vicente-Pérez, Ricardo; Mellado, Miguel; Meza-Herrera, César; Vargas-Villamil, Luis.
Afiliación
  • Theusme C; Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Valle de Mexicali, 21705, Mexicali, B.C, México.
  • Avendaño-Reyes L; Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Valle de Mexicali, 21705, Mexicali, B.C, México. lar62@uabc.edu.mx.
  • Macías-Cruz U; Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Valle de Mexicali, 21705, Mexicali, B.C, México.
  • Castañeda-Bustos V; Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Valle de Mexicali, 21705, Mexicali, B.C, México.
  • García-Cueto R; Instituto de Ingeniería, Universidad Autónoma de Baja California, 21100, Mexicali, B.C, México.
  • Vicente-Pérez R; Centro Universitario de La Costa Sur, Universidad de Guadalajara, 48900, Autlán de Navarro, Jalisco, México.
  • Mellado M; Departamento de Nutrición Animal, Universidad Autónoma Agraria Antonio Narro, 25315, Saltillo, Coahuila, México.
  • Meza-Herrera C; Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, 35230, Bermejillo, Durango, México.
  • Vargas-Villamil L; Colegio de Postgraduados, Campus Tabasco, 86500, Cárdenas, Tabasco, México.
Int J Biometeorol ; 66(12): 2489-2500, 2022 Dec.
Article en En | MEDLINE | ID: mdl-36239801
The objective of this study was to develop an equation to predict rectal temperature (RT) using body surface temperatures (BSTs), physiological and climatic variables in pubertal Holstein heifers in an arid region. Two hundred Holstein heifers were used from July to September during two consecutive summers (2019 and 2020). Respiratory frequency (RF) was used as a physiological variable and ambient temperature, relative humidity and temperature-humidity index as climatic variables. For the body surface temperatures, infrared thermography was used considering the following anatomical regions: shoulder, belly, rump, leg, neck, head, forehead, nose, loin, leg, vulva, eye, flank, and lateral area (right side). Initially, a Pearson correlation analysis examined the relationship among variables, and then multiple linear regression analysis was used to develop the prediction equation. Physiological parameters RT and RF were highly correlated with each other (r = 0.73; P˂0.0001), while all BST presented from low to moderate correlations with RT and RF. BST forehead temperature (FH) showed the highest (r = 0.58) correlation with RT. The equation RT = 35.55 + 0.033 (RF) + 0.030 (FH) + ei is considered the best regression equation model to predict RT in Holstein heifers in arid zones. This decision was made on the indicators R2 = 60%, RMSE = 0.25, and AIC = 0.25, which were considered adequate variability indicators.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Temperatura Corporal / Termografía Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: Int J Biometeorol Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Temperatura Corporal / Termografía Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: Int J Biometeorol Año: 2022 Tipo del documento: Article