Highly efficient near-infrared light-emitting diodes based on Zn:CuInSe2/ZnS//ZnS quantum dots with double shell engineering.
Opt Express
; 30(16): 29449-29460, 2022 Aug 01.
Article
en En
| MEDLINE
| ID: mdl-36299119
Near-infrared (NIR) quantum dot-based light-emitting diodes (QLEDs) developed rapidly in the fields of biomedical applications, telecommunications, sensing and diagnostics. However, it remains an enormous challenge for the synthesis of high-quality NIR QD materials with low toxicity or non-toxicity, high photoluminescence (PL) quantum yields (QYs) and high stability. Herein, we used a facile method to synthesize large-sized (8 nm) and thick-shell NIR Zn:CuInSe2/ZnS//ZnS QDs by engineering a double ZnS shell. The resulting NIR QDs exhibited high PL QYs of 80%, and excellent photochemical stability, which could be ascribed to the decreased lattice mismatch of the core/shell interface by the introduced Zn element into CuInSe2 cores and the energetic defect passivation of the double ZnS shell engineering. Furthermore, the high-quality Zn:CuInSe2/ZnS//ZnS QDs based LEDs exhibited the maximum external quantum efficiency (EQE) of 3.0%, 4.0% and 2.5% for PL peaks located at 705, 719 and 728 nm, respectively. This efficiency is comparable to that of the outstanding PbS- and InAs-based NIR QLEDs, as well as the avoidance of toxic heavymetal and/or hazardous reagents in this work. The synthesized high-quality Zn:CuInSe2/ZnS//ZnS QDs could be expected to promote the potential applications of heavy-metal-free QDs in the NIR fields.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Opt Express
Asunto de la revista:
OFTALMOLOGIA
Año:
2022
Tipo del documento:
Article