Your browser doesn't support javascript.
loading
SPRDA: a link prediction approach based on the structural perturbation to infer disease-associated Piwi-interacting RNAs.
Zheng, Kai; Zhang, Xin-Lu; Wang, Lei; You, Zhu-Hong; Ji, Bo-Ya; Liang, Xiao; Li, Zheng-Wei.
Afiliación
  • Zheng K; Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
  • Zhang XL; College of Information Science and Engineering, Zaozhuang University, Zaozhuang 277100, China.
  • Wang L; Civil Product General Research Institute, The 36th Research Institute of China Electronics Technology Group Corporation, Jiaxing, 314000, China.
  • You ZH; College of Information Science and Engineering, Zaozhuang University, Zaozhuang 277100, China.
  • Ji BY; Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning, 530007, China.
  • Liang X; Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning, 530007, China.
  • Li ZW; College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410006, China.
Brief Bioinform ; 24(1)2023 01 19.
Article en En | MEDLINE | ID: mdl-36445194
piRNA and PIWI proteins have been confirmed for disease diagnosis and treatment as novel biomarkers due to its abnormal expression in various cancers. However, the current research is not strong enough to further clarify the functions of piRNA in cancer and its underlying mechanism. Therefore, how to provide large-scale and serious piRNA candidates for biological research has grown up to be a pressing issue. In this study, a novel computational model based on the structural perturbation method is proposed to predict potential disease-associated piRNAs, called SPRDA. Notably, SPRDA belongs to positive-unlabeled learning, which is unaffected by negative examples in contrast to previous approaches. In the 5-fold cross-validation, SPRDA shows high performance on the benchmark dataset piRDisease, with an AUC of 0.9529. Furthermore, the predictive performance of SPRDA for 10 diseases shows the robustness of the proposed method. Overall, the proposed approach can provide unique insights into the pathogenesis of the disease and will advance the field of oncology diagnosis and treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ARN de Interacción con Piwi / Neoplasias Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ARN de Interacción con Piwi / Neoplasias Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: China