Your browser doesn't support javascript.
loading
Anomaly Detection Based on Time Series Data of Hydraulic Accumulator.
Park, Min-Ho; Chakraborty, Sabyasachi; Vuong, Quang Dao; Noh, Dong-Hyeon; Lee, Ji-Woong; Lee, Jae-Ung; Choi, Jae-Hyuk; Lee, Won-Ju.
Afiliación
  • Park MH; Division of Marine Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
  • Chakraborty S; Interdisciplinary Major of Maritime and AI Convergence, Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
  • Vuong QD; Terenz Co., Ltd., Busan 48060, Republic of Korea.
  • Noh DH; Division of Marine System Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
  • Lee JW; Hwajin Enterprise Co., Ltd., 25, Mieumsandan 2-ro, Gangseo-gu, Busan 46748, Republic of Korea.
  • Lee JU; Division of Marine System Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
  • Choi JH; Division of Marine System Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
  • Lee WJ; Division of Marine System Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
Sensors (Basel) ; 22(23)2022 Dec 02.
Article en En | MEDLINE | ID: mdl-36502152
Although hydraulic accumulators play a vital role in the hydraulic system, they face the challenges of being broken by continuous abnormal pulsating pressure which occurs due to the malfunction of hydraulic systems. Hence, this study develops anomaly detection algorithms to detect abnormalities of pulsating pressure for hydraulic accumulators. A digital pressure sensor was installed in a hydraulic accumulator to acquire the pulsating pressure data. Six anomaly detection algorithms were developed based on the acquired data. A threshold averaging algorithm over a period based on the averaged maximum/minimum thresholds detected anomalies 2.5 h before the hydraulic accumulator failure. In the support vector machine (SVM) and XGBoost model that distinguish normal and abnormal pulsating pressure data, the SVM model had an accuracy of 0.8571 on the test set and the XGBoost model had an accuracy of 0.8857. In a convolutional neural network (CNN) and CNN autoencoder model trained with normal and abnormal pulsating pressure images, the CNN model had an accuracy of 0.9714, and the CNN autoencoder model correctly detected the 8 abnormal images out of 11 abnormal images. The long short-term memory (LSTM) autoencoder model detected 36 abnormal data points in the test set.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Máquina de Vectores de Soporte Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Máquina de Vectores de Soporte Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article