Your browser doesn't support javascript.
loading
Hypothesis-driven modeling of the human lung-ventilator system: A characterization tool for Acute Respiratory Distress Syndrome research.
Stroh, J N; Smith, Bradford J; Sottile, Peter D; Hripcsak, George; Albers, David J.
Afiliación
  • Stroh JN; Department of Biomedical Informatics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA; Department of Bioengineering, University of Colorado, Denver-Anschutz Medical Campus, Aurora, CO, USA. Electronic address: jn.stroh@cuanschutz.edu.
  • Smith BJ; Department of Bioengineering, University of Colorado, Denver-Anschutz Medical Campus, Aurora, CO, USA; Section of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
  • Sottile PD; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
  • Hripcsak G; Department of Biomedical Informatics, Columbia University, New York, NY, USA.
  • Albers DJ; Department of Biomedical Informatics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA; Department of Bioengineering, University of Colorado, Denver-Anschutz Medical Campus, Aurora, CO, USA; Department of Biomedical Informatics, Columbia University, New York, NY, U
J Biomed Inform ; 137: 104275, 2023 01.
Article en En | MEDLINE | ID: mdl-36572279
ABSTRACT
Mechanical ventilation is an essential tool in the management of Acute Respiratory Distress Syndrome (ARDS), but it exposes patients to the risk of ventilator-induced lung injury (VILI). The human lung-ventilator system (LVS) involves the interaction of complex anatomy with a mechanical apparatus, which limits the ability of process-based models to provide individualized clinical support. This work proposes a hypothesis-driven strategy for LVS modeling in which robust personalization is achieved using a pre-defined parameter basis in a non-physiological model. Model inversion, here via windowed data assimilation, forges observed waveforms into interpretable parameter values that characterize the data rather than quantifying physiological processes. Accurate, model-based inference on human-ventilator data indicates model flexibility and utility over a variety of breath types, including those from dyssynchronous LVSs. Estimated parameters generate static characterizations of the data that are 50%-70% more accurate than breath-wise single-compartment model estimates. They also retain sufficient information to distinguish between the types of breath they represent. However, the fidelity and interpretability of model characterizations are tied to parameter definitions and model resolution. These additional factors must be considered in conjunction with the objectives of specific applications, such as identifying and tracking the development of human VILI.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Síndrome de Dificultad Respiratoria / Lesión Pulmonar Inducida por Ventilación Mecánica Tipo de estudio: Etiology_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Biomed Inform Asunto de la revista: INFORMATICA MEDICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Síndrome de Dificultad Respiratoria / Lesión Pulmonar Inducida por Ventilación Mecánica Tipo de estudio: Etiology_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Biomed Inform Asunto de la revista: INFORMATICA MEDICA Año: 2023 Tipo del documento: Article