Your browser doesn't support javascript.
loading
Plant species composition and local habitat conditions as primary determinants of terrestrial arthropod assemblages.
Tobisch, Cynthia; Rojas-Botero, Sandra; Uhler, Johannes; Müller, Jörg; Kollmann, Johannes; Moning, Christoph; Brändle, Martin; Gossner, Martin M; Redlich, Sarah; Zhang, Jie; Steffan-Dewenter, Ingolf; Benjamin, Caryl; Englmeier, Jana; Fricke, Ute; Ganuza, Cristina; Haensel, Maria; Riebl, Rebekka; Uphus, Lars; Ewald, Jörg.
Afiliación
  • Tobisch C; Institute of Ecology and Landscape, Weihenstephan-Triesdorf University of Applied Sciences, Freising, Germany. cynthia.tobisch@tum.de.
  • Rojas-Botero S; Chair of Restoration Ecology, School of Life Sciences, Technical University of Munich, Freising, Germany. cynthia.tobisch@tum.de.
  • Uhler J; Chair of Restoration Ecology, School of Life Sciences, Technical University of Munich, Freising, Germany.
  • Müller J; Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
  • Kollmann J; Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
  • Moning C; Bavarian Forest National Park, Grafenau, Germany.
  • Brändle M; Chair of Restoration Ecology, School of Life Sciences, Technical University of Munich, Freising, Germany.
  • Gossner MM; Institute of Ecology and Landscape, Weihenstephan-Triesdorf University of Applied Sciences, Freising, Germany.
  • Redlich S; Division of Animal Ecology, Department of Ecology, Philipps-Universität Marburg, Marburg, Germany.
  • Zhang J; Forest Entomology, Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland.
  • Steffan-Dewenter I; Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland.
  • Benjamin C; Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
  • Englmeier J; Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
  • Fricke U; Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
  • Ganuza C; Ecoclimatology, School of Life Sciences, Technical University of Munich, Freising, Germany.
  • Haensel M; Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
  • Riebl R; Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
  • Uphus L; Department of Animal Ecology and Tropical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
  • Ewald J; Professorship of Ecological Services, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.
Oecologia ; 201(3): 813-825, 2023 Mar.
Article en En | MEDLINE | ID: mdl-36869183
ABSTRACT
Arthropods respond to vegetation in multiple ways since plants provide habitat and food resources and indicate local abiotic conditions. However, the relative importance of these factors for arthropod assemblages is less well understood. We aimed to disentangle the effects of plant species composition and environmental drivers on arthropod taxonomic composition and to assess which aspects of vegetation contribute to the relationships between plant and arthropod assemblages. In a multi-scale field study in Southern Germany, we sampled vascular plants and terrestrial arthropods in typical habitats of temperate landscapes. We compared independent and shared effects of vegetation and abiotic predictors on arthropod composition distinguishing between four large orders (Lepidoptera, Coleoptera, Hymenoptera, Diptera), and five functional groups (herbivores, pollinators, predators, parasitoids, detritivores). Across all investigated groups, plant species composition explained the major fraction of variation in arthropod composition, while land-cover composition was another important predictor. Moreover, the local habitat conditions depicted by the indicator values of the plant communities were more important for arthropod composition than trophic relationships between certain plant and arthropod species. Among trophic groups, predators showed the strongest response to plant species composition, while responses of herbivores and pollinators were stronger than those of parasitoids and detritivores. Our results highlight the relevance of plant community composition for terrestrial arthropod assemblages across multiple taxa and trophic levels and emphasize the value of plants as a proxy for characterizing habitat conditions that are hardly accessible to direct environmental measurements.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Artrópodos / Escarabajos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Oecologia Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Artrópodos / Escarabajos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Oecologia Año: 2023 Tipo del documento: Article País de afiliación: Alemania