Your browser doesn't support javascript.
loading
Structure-Kinetics Relationships of Opioids from Metadynamics and Machine Learning Analysis.
Mahinthichaichan, Paween; Liu, Ruibin; Vo, Quynh N; Ellis, Christopher R; Stavitskaya, Lidiya; Shen, Jana.
Afiliación
  • Mahinthichaichan P; Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States.
  • Liu R; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States.
  • Vo QN; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States.
  • Ellis CR; Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States.
  • Stavitskaya L; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States.
  • Shen J; DEVCOM Chemical Biological Center, United States Army, Aberdeen Proving Ground, Maryland 21010, United States.
J Chem Inf Model ; 63(7): 2196-2206, 2023 04 10.
Article en En | MEDLINE | ID: mdl-36977188
The nation's opioid overdose deaths reached an all-time high in 2021. The majority of deaths are due to synthetic opioids represented by fentanyl. Naloxone, which is a FDA-approved reversal agent, antagonizes opioids through competitive binding at the µ-opioid receptor (mOR). Thus, knowledge of the opioid's residence time is important for assessing the effectiveness of naloxone. Here, we estimated the residence times (τ) of 15 fentanyl and 4 morphine analogs using metadynamics and compared them with the most recent measurement of the opioid kinetic, dissociation, and naloxone inhibitory constants (Mann et al. Clin. Pharmacol. Therapeut. 2022, 120, 1020-1232). Importantly, the microscopic simulations offered a glimpse at the common binding mechanism and molecular determinants of dissociation kinetics for fentanyl analogs. The insights inspired us to develop a machine learning approach to analyze the kinetic impact of fentanyl's substituents based on the interactions with mOR residues. This proof-of-concept approach is general; for example, it may be used to tune ligand residence times in computer-aided drug discovery.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Analgésicos Opioides / Naloxona Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Analgésicos Opioides / Naloxona Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos