Your browser doesn't support javascript.
loading
Relating enhancer genetic variation across mammals to complex phenotypes using machine learning.
Kaplow, Irene M; Lawler, Alyssa J; Schäffer, Daniel E; Srinivasan, Chaitanya; Sestili, Heather H; Wirthlin, Morgan E; Phan, BaDoi N; Prasad, Kavya; Brown, Ashley R; Zhang, Xiaomeng; Foley, Kathleen; Genereux, Diane P; Karlsson, Elinor K; Lindblad-Toh, Kerstin; Meyer, Wynn K; Pfenning, Andreas R.
Afiliación
  • Kaplow IM; Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Lawler AJ; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Schäffer DE; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Srinivasan C; Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Sestili HH; Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Wirthlin ME; Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Phan BN; Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Prasad K; Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Brown AR; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Zhang X; Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Foley K; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Genereux DP; Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
  • Karlsson EK; Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Lindblad-Toh K; Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Meyer WK; Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
  • Pfenning AR; Broad Institute, Cambridge, MA, USA.
Science ; 380(6643): eabm7993, 2023 04 28.
Article en En | MEDLINE | ID: mdl-37104615
Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low sequence conservation. We developed the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species' phenotypes using predictions from machine learning models trained on specific tissues. Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological phenotypes revealed dozens of enhancer-phenotype associations, including brain size-associated enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation for identifying enhancers associated with the evolution of any convergently evolved phenotype in any large group of species with aligned genomes.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Variación Genética / Elementos de Facilitación Genéticos / Aprendizaje Automático / Mamíferos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Science Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Variación Genética / Elementos de Facilitación Genéticos / Aprendizaje Automático / Mamíferos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Science Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos