Your browser doesn't support javascript.
loading
Explainable multi-task learning for multi-modality biological data analysis.
Tang, Xin; Zhang, Jiawei; He, Yichun; Zhang, Xinhe; Lin, Zuwan; Partarrieu, Sebastian; Hanna, Emma Bou; Ren, Zhaolin; Shen, Hao; Yang, Yuhong; Wang, Xiao; Li, Na; Ding, Jie; Liu, Jia.
Afiliación
  • Tang X; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.
  • Zhang J; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
  • He Y; School of Statistics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA.
  • Zhang X; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.
  • Lin Z; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
  • Partarrieu S; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.
  • Hanna EB; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
  • Ren Z; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.
  • Shen H; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.
  • Yang Y; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.
  • Wang X; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.
  • Li N; School of Statistics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA.
  • Ding J; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
  • Liu J; Department of Chemistry, MIT, Cambridge, MA, 02139, USA.
Nat Commun ; 14(1): 2546, 2023 05 03.
Article en En | MEDLINE | ID: mdl-37137905
ABSTRACT
Current biotechnologies can simultaneously measure multiple high-dimensional modalities (e.g., RNA, DNA accessibility, and protein) from the same cells. A combination of different analytical tasks (e.g., multi-modal integration and cross-modal analysis) is required to comprehensively understand such data, inferring how gene regulation drives biological diversity and functions. However, current analytical methods are designed to perform a single task, only providing a partial picture of the multi-modal data. Here, we present UnitedNet, an explainable multi-task deep neural network capable of integrating different tasks to analyze single-cell multi-modality data. Applied to various multi-modality datasets (e.g., Patch-seq, multiome ATAC + gene expression, and spatial transcriptomics), UnitedNet demonstrates similar or better accuracy in multi-modal integration and cross-modal prediction compared with state-of-the-art methods. Moreover, by dissecting the trained UnitedNet with the explainable machine learning algorithm, we can directly quantify the relationship between gene expression and other modalities with cell-type specificity. UnitedNet is a comprehensive end-to-end framework that could be broadly applicable to single-cell multi-modality biology. This framework has the potential to facilitate the discovery of cell-type-specific regulation kinetics across transcriptomics and other modalities.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Biodiversidad Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Biodiversidad Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos