Your browser doesn't support javascript.
loading
Experimental Realization of a Three-Dimensional Dirac Semimetal Phase with a Tunable Lifshitz Transition in Au_{2}Pb.
Sánchez-Barriga, J; Clark, O J; Vergniory, M G; Krivenkov, M; Varykhalov, A; Rader, O; Schoop, L M.
Afiliación
  • Sánchez-Barriga J; Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany.
  • Clark OJ; IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain.
  • Vergniory MG; Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany.
  • Krivenkov M; Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany.
  • Varykhalov A; IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain.
  • Rader O; Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
  • Schoop LM; Max Planck Institute for Chemical Physics of Solids, Dresden D-01187, Germany.
Phys Rev Lett ; 130(23): 236402, 2023 Jun 09.
Article en En | MEDLINE | ID: mdl-37354399
ABSTRACT
Three-dimensional Dirac semimetals are an exotic state of matter that continue to attract increasing attention due to the unique properties of their low-energy excitations. Here, by performing angle-resolved photoemission spectroscopy, we investigate the electronic structure of Au_{2}Pb across a wide temperature range. Our experimental studies on the (111)-cleaved surface unambiguously demonstrate that Au_{2}Pb is a three-dimensional Dirac semimetal characterized by the presence of a bulk Dirac cone projected off-center of the bulk Brillouin zone (BZ), in agreement with our theoretical calculations. Unusually, we observe that the bulk Dirac cone is significantly shifted by more than 0.4 eV to higher binding energies with reducing temperature, eventually going through a Lifshitz transition. The pronounced downward shift is qualitatively reproduced by our calculations indicating that an enhanced orbital overlap upon compression of the lattice, which preserves C_{4} rotational symmetry, is the main driving mechanism for the Lifshitz transition. These findings not only broaden the range of currently known materials exhibiting three-dimensional Dirac phases, but also show a viable mechanism by which it could be possible to switch on and off the contribution of the degeneracy point to electron transport without external doping.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Plomo Idioma: En Revista: Phys Rev Lett Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Plomo Idioma: En Revista: Phys Rev Lett Año: 2023 Tipo del documento: Article País de afiliación: Alemania