Your browser doesn't support javascript.
loading
Rational Engineering of p-n Heterogeneous ZnS/SnO2 Quantum Dots with Fast Ion Kinetics for Superior Li/Na-Ion Battery.
Zhan, Guang-Hao; Liao, Wen-Hua; Hu, Qian-Qian; Wu, Xiao-Hui; Huang, Xiao-Ying.
Afiliación
  • Zhan GH; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.
  • Liao WH; College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
  • Hu QQ; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.
  • Wu XH; College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China.
  • Huang XY; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.
Small ; 19(43): e2300534, 2023 Oct.
Article en En | MEDLINE | ID: mdl-37357154
ABSTRACT
Constructing heterogeneous nanostructures is an efficient strategy to improve the electrical and ionic conductivity of metal chalcogenide-based anodes. Herein, ZnS/SnO2 quantum dots (QDs) as p-n heterojunctions that are uniformly anchored to reduced graphene oxides (ZnS-SnO2 @rGO) are designed and engineered. Combining the merits of fast electron transport via the internal electric field and a greatly shortened Li/Na ion diffusion pathway in the ZnS/SnO2 QDs (3-5 nm), along with the excellent electrical conductivity and good structural stability provided by the rGO matrix, the ZnS-SnO2 @rGO anode exhibits enhanced electronic and ionic conductivity, which can be proved by both experiments and theoretical calculations. Consequently, the ZnS-SnO2 @rGO anode shows a significantly improved rate performance that simple counterpart composite anodes cannot achieve. Specifically, high reversible specific capacities are achieved for both lithium-ion battery (551 mA h g-1 at 5.0 A g-1 , 670 mA h g-1 at 3.0 A g-1 after 1400 cycles) and sodium-ion battery (334 mA h g-1 at 5.0 A g-1 , 313 mA h g-1 at 1.0 A g-1 after 400 cycles). Thus, this strategy to build semiconductor metal sulfides/metal oxide heterostructures at the atomic scale may inspire the rational design of metal compounds for high-performance battery applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article