AGMN: Association Graph-based Graph Matching Network for Coronary Artery Semantic Labeling on Invasive Coronary Angiograms.
Pattern Recognit
; 1432023 Nov.
Article
en En
| MEDLINE
| ID: mdl-37483334
Semantic labeling of coronary arterial segments in invasive coronary angiography (ICA) is important for automated assessment and report generation of coronary artery stenosis in computer-aided coronary artery disease (CAD) diagnosis. However, separating and identifying individual coronary arterial segments is challenging because morphological similarities of different branches on the coronary arterial tree and human-to-human variabilities exist. Inspired by the training procedure of interventional cardiologists for interpreting the structure of coronary arteries, we propose an association graph-based graph matching network (AGMN) for coronary arterial semantic labeling. We first extract the vascular tree from invasive coronary angiography (ICA) and convert it into multiple individual graphs. Then, an association graph is constructed from two individual graphs where each vertex represents the relationship between two arterial segments. Thus, we convert the arterial segment labeling task into a vertex classification task; ultimately, the semantic artery labeling becomes equivalent to identifying the artery-to-artery correspondence on graphs. More specifically, the AGMN extracts the vertex features by the embedding module using the association graph, aggregates the features from adjacent vertices and edges by graph convolution network, and decodes the features to generate the semantic mappings between arteries. By learning the mapping of arterial branches between two individual graphs, the unlabeled arterial segments are classified by the labeled segments to achieve semantic labeling. A dataset containing 263 ICAs was employed to train and validate the proposed model, and a five-fold cross-validation scheme was performed. Our AGMN model achieved an average accuracy of 0.8264, an average precision of 0.8276, an average recall of 0.8264, and an average F1-score of 0.8262, which significantly outperformed existing coronary artery semantic labeling methods. In conclusion, we have developed and validated a new algorithm with high accuracy, interpretability, and robustness for coronary artery semantic labeling on ICAs.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Pattern Recognit
Año:
2023
Tipo del documento:
Article
País de afiliación:
Estados Unidos