Your browser doesn't support javascript.
loading
DNA methylation in the mouse cochlea promotes maturation of supporting cells and contributes to the failure of hair cell regeneration.
Nguyen, John D; Llamas, Juan; Shi, Tuo; Crump, J Gage; Groves, Andrew K; Segil, Neil.
Afiliación
  • Nguyen JD; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at the University of Southern California, Los Angeles, CA 90033.
  • Llamas J; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at the University of Southern California, Los Angeles, CA 90033.
  • Shi T; Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033.
  • Crump JG; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at the University of Southern California, Los Angeles, CA 90033.
  • Groves AK; Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033.
  • Segil N; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at the University of Southern California, Los Angeles, CA 90033.
Proc Natl Acad Sci U S A ; 120(33): e2300839120, 2023 08 15.
Article en En | MEDLINE | ID: mdl-37549271
Mammalian hair cells do not functionally regenerate in adulthood but can regenerate at embryonic and neonatal stages in mice by direct transdifferentiation of neighboring supporting cells into new hair cells. Previous work showed loss of transdifferentiation potential of supporting cells is in part due to H3K4me1 enhancer decommissioning of the hair cell gene regulatory network during the first postnatal week. However, inhibiting this decommissioning only partially preserves transdifferentiation potential. Therefore, we explored other repressive epigenetic modifications that may be responsible for this loss of plasticity. We find supporting cells progressively accumulate DNA methylation at promoters of developmentally regulated hair cell genes. Specifically, DNA methylation overlaps with binding sites of Atoh1, a key transcription factor for hair cell fate. We further show that DNA hypermethylation replaces H3K27me3-mediated repression of hair cell genes in mature supporting cells, and is accompanied by progressive loss of chromatin accessibility, suggestive of facultative heterochromatin formation. Another subset of hair cell loci is hypermethylated in supporting cells, but not in hair cells. Ten-eleven translocation (TET) enzyme-mediated demethylation of these hypermethylated sites is necessary for neonatal supporting cells to transdifferentiate into hair cells. We also observe changes in chromatin accessibility of supporting cell subtypes at the single-cell level with increasing age: Gene programs promoting sensory epithelium development loses chromatin accessibility, in favor of gene programs that promote physiological maturation and function of the cochlea. We also find chromatin accessibility is partially recovered in a chronically deafened mouse model, which holds promise for future translational efforts in hearing restoration.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Metilación de ADN / Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Metilación de ADN / Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2023 Tipo del documento: Article