Your browser doesn't support javascript.
loading
An analog-AI chip for energy-efficient speech recognition and transcription.
Ambrogio, S; Narayanan, P; Okazaki, A; Fasoli, A; Mackin, C; Hosokawa, K; Nomura, A; Yasuda, T; Chen, A; Friz, A; Ishii, M; Luquin, J; Kohda, Y; Saulnier, N; Brew, K; Choi, S; Ok, I; Philip, T; Chan, V; Silvestre, C; Ahsan, I; Narayanan, V; Tsai, H; Burr, G W.
Afiliación
  • Ambrogio S; IBM Research - Almaden, San Jose, CA, USA. stefano.ambrogio@ibm.com.
  • Narayanan P; IBM Research - Almaden, San Jose, CA, USA.
  • Okazaki A; IBM Research - Tokyo, Kawasaki, Japan.
  • Fasoli A; IBM Research - Almaden, San Jose, CA, USA.
  • Mackin C; IBM Research - Almaden, San Jose, CA, USA.
  • Hosokawa K; IBM Research - Tokyo, Kawasaki, Japan.
  • Nomura A; IBM Research - Tokyo, Kawasaki, Japan.
  • Yasuda T; IBM Research - Tokyo, Kawasaki, Japan.
  • Chen A; IBM Research - Almaden, San Jose, CA, USA.
  • Friz A; IBM Research - Almaden, San Jose, CA, USA.
  • Ishii M; IBM Research - Tokyo, Kawasaki, Japan.
  • Luquin J; IBM Research - Almaden, San Jose, CA, USA.
  • Kohda Y; IBM Research - Tokyo, Kawasaki, Japan.
  • Saulnier N; IBM Research - Albany NanoTech Center, Albany, NY, USA.
  • Brew K; IBM Research - Albany NanoTech Center, Albany, NY, USA.
  • Choi S; IBM Research - Albany NanoTech Center, Albany, NY, USA.
  • Ok I; IBM Research - Albany NanoTech Center, Albany, NY, USA.
  • Philip T; IBM Research - Albany NanoTech Center, Albany, NY, USA.
  • Chan V; IBM Research - Albany NanoTech Center, Albany, NY, USA.
  • Silvestre C; IBM Research - Albany NanoTech Center, Albany, NY, USA.
  • Ahsan I; IBM Research - Albany NanoTech Center, Albany, NY, USA.
  • Narayanan V; IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA.
  • Tsai H; IBM Research - Almaden, San Jose, CA, USA.
  • Burr GW; IBM Research - Almaden, San Jose, CA, USA.
Nature ; 620(7975): 768-775, 2023 Aug.
Article en En | MEDLINE | ID: mdl-37612392
ABSTRACT
Models of artificial intelligence (AI) that have billions of parameters can achieve high accuracy across a range of tasks1,2, but they exacerbate the poor energy efficiency of conventional general-purpose processors, such as graphics processing units or central processing units. Analog in-memory computing (analog-AI)3-7 can provide better energy efficiency by performing matrix-vector multiplications in parallel on 'memory tiles'. However, analog-AI has yet to demonstrate software-equivalent (SWeq) accuracy on models that require many such tiles and efficient communication of neural-network activations between the tiles. Here we present an analog-AI chip that combines 35 million phase-change memory devices across 34 tiles, massively parallel inter-tile communication and analog, low-power peripheral circuitry that can achieve up to 12.4 tera-operations per second per watt (TOPS/W) chip-sustained performance. We demonstrate fully end-to-end SWeq accuracy for a small keyword-spotting network and near-SWeq accuracy on the much larger MLPerf8 recurrent neural-network transducer (RNNT), with more than 45 million weights mapped onto more than 140 million phase-change memory devices across five chips.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nature Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nature Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos