Your browser doesn't support javascript.
loading
Senescence in yeast is associated with amplified linear fragments of chromosome XII rather than ribosomal DNA circle accumulation.
Zylstra, Andre; Hadj-Moussa, Hanane; Horkai, Dorottya; Whale, Alex J; Piguet, Baptiste; Houseley, Jonathan.
Afiliación
  • Zylstra A; Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom.
  • Hadj-Moussa H; Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom.
  • Horkai D; Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom.
  • Whale AJ; Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom.
  • Piguet B; Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom.
  • Houseley J; Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom.
PLoS Biol ; 21(8): e3002250, 2023 08.
Article en En | MEDLINE | ID: mdl-37643194
The massive accumulation of extrachromosomal ribosomal DNA circles (ERCs) in yeast mother cells has been long cited as the primary driver of replicative ageing. ERCs arise through ribosomal DNA (rDNA) recombination, and a wealth of genetic data connects rDNA instability events giving rise to ERCs with shortened life span and other ageing pathologies. However, we understand little about the molecular effects of ERC accumulation. Here, we studied ageing in the presence and absence of ERCs, and unexpectedly found no evidence of gene expression differences that might indicate stress responses or metabolic feedback caused by ERCs. Neither did we observe any global change in the widespread disruption of gene expression that accompanies yeast ageing, altogether suggesting that ERCs are largely inert. Much of the differential gene expression that accompanies ageing in yeast was actually associated with markers of the senescence entry point (SEP), showing that senescence, rather than age, underlies these changes. Cells passed the SEP irrespective of ERCs, but we found the SEP to be associated with copy number amplification of a region of chromosome XII between the rDNA and the telomere (ChrXIIr) forming linear fragments up to approximately 1.8 Mb size, which arise in aged cells due to rDNA instability but through a different mechanism to ERCs. Therefore, although rDNA copy number increases dramatically with age due to ERC accumulation, our findings implicate ChrXIIr, rather than ERCs, as the primary driver of senescence during budding yeast ageing.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Telómero Tipo de estudio: Risk_factors_studies Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Telómero Tipo de estudio: Risk_factors_studies Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido