Your browser doesn't support javascript.
loading
Artificial intelligence to identify fractures on pediatric and young adult upper extremity radiographs.
Zech, John R; Jaramillo, Diego; Altosaar, Jaan; Popkin, Charles A; Wong, Tony T.
Afiliación
  • Zech JR; Department of Radiology, Columbia University Irving Medical Center, 622 W. 168th St., New York, NY, 10032, USA. jrzech@gmail.com.
  • Jaramillo D; Department of Radiology, Columbia University Irving Medical Center, 622 W. 168th St., New York, NY, 10032, USA.
  • Altosaar J; One Fact Foundation, Brooklyn, NY, USA.
  • Popkin CA; Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, NY, USA.
  • Wong TT; Department of Radiology, Columbia University Irving Medical Center, 622 W. 168th St., New York, NY, 10032, USA.
Pediatr Radiol ; 53(12): 2386-2397, 2023 11.
Article en En | MEDLINE | ID: mdl-37740031
BACKGROUND: Pediatric fractures are challenging to identify given the different response of the pediatric skeleton to injury compared to adults, and most artificial intelligence (AI) fracture detection work has focused on adults. OBJECTIVE: Develop and transparently share an AI model capable of detecting a range of pediatric upper extremity fractures. MATERIALS AND METHODS: In total, 58,846 upper extremity radiographs (finger/hand, wrist/forearm, elbow, humerus, shoulder/clavicle) from 14,873 pediatric and young adult patients were divided into train (n = 12,232 patients), tune (n = 1,307), internal test (n = 819), and external test (n = 515) splits. Fracture was determined by manual inspection of all test radiographs and the subset of train/tune radiographs whose reports were classified fracture-positive by a rule-based natural language processing (NLP) algorithm. We trained an object detection model (Faster Region-based Convolutional Neural Network [R-CNN]; "strongly-supervised") and an image classification model (EfficientNetV2-Small; "weakly-supervised") to detect fractures using train/tune data and evaluate on test data. AI fracture detection accuracy was compared with accuracy of on-call residents on cases they preliminarily interpreted overnight. RESULTS: A strongly-supervised fracture detection AI model achieved overall test area under the receiver operating characteristic curve (AUC) of 0.96 (95% CI 0.95-0.97), accuracy 89.7% (95% CI 88.0-91.3%), sensitivity 90.8% (95% CI 88.5-93.1%), and specificity 88.7% (95% CI 86.4-91.0%), and outperformed a weakly-supervised model (AUC 0.93, 95% CI 0.92-0.94, P < 0.0001). AI accuracy on cases preliminary interpreted overnight was higher than resident accuracy (AI 89.4% vs. 85.1%, 95% CI 87.3-91.5% vs. 82.7-87.5%, P = 0.01). CONCLUSION: An object detection AI model identified pediatric upper extremity fractures with high accuracy.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Inteligencia Artificial / Fracturas Óseas Tipo de estudio: Prognostic_studies Límite: Adult / Child / Humans Idioma: En Revista: Pediatr Radiol Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Inteligencia Artificial / Fracturas Óseas Tipo de estudio: Prognostic_studies Límite: Adult / Child / Humans Idioma: En Revista: Pediatr Radiol Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos