Your browser doesn't support javascript.
loading
Plant Extract-Derived Carbon Dots as Cosmetic Ingredients.
Ngoc, Le Thi Nhu; Moon, Ju-Young; Lee, Young-Chul.
Afiliación
  • Ngoc LTN; Department of Nano Science and Technology Convergence, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
  • Moon JY; Major in Beauty Convergence, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.
  • Lee YC; Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
Nanomaterials (Basel) ; 13(19)2023 Sep 27.
Article en En | MEDLINE | ID: mdl-37836295
ABSTRACT
Plant extract-derived carbon dots (C-dots) have emerged as promising components for sustainability and natural inspiration to meet consumer demands. This review comprehensively explores the potential applications of C-dots derived from plant extracts in cosmetics. This paper discusses the synthesis methodologies for the generation of C-dots from plant precursors, including pyrolysis carbonization, chemical oxidation, hydrothermal, microwave-assisted, and ultrasonic methods. Plant extract-derived C-dots offer distinct advantages over conventional synthetic materials by taking advantage of the inherent properties of plants, such as antioxidant, anti-inflammatory, and UV protective properties. These outstanding properties are critical for novel cosmetic applications such as for controlling skin aging, the treatment of inflammatory skin conditions, and sunscreen. In conclusion, plant extract-derived C-dots combine cutting-edge nanotechnology and sustainable cosmetic innovation, presenting an opportunity to revolutionize the industry by offering enhanced properties while embracing eco-friendly practices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2023 Tipo del documento: Article