Your browser doesn't support javascript.
loading
Shrinkage-based Random Local Clocks with Scalable Inference.
Fisher, Alexander A; Ji, Xiang; Nishimura, Akihiko; Baele, Guy; Lemey, Philippe; Suchard, Marc A.
Afiliación
  • Fisher AA; Department of Statistical Science, Duke University, Durham, NC, USA.
  • Ji X; Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, LA, USA.
  • Nishimura A; Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
  • Baele G; Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
  • Lemey P; Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
  • Suchard MA; Department of Computational Medicine, University of California, Los Angeles, CA, USA.
Mol Biol Evol ; 40(11)2023 Nov 03.
Article en En | MEDLINE | ID: mdl-37950885
ABSTRACT
Molecular clock models undergird modern methods of divergence-time estimation. Local clock models propose that the rate of molecular evolution is constant within phylogenetic subtrees. Current local clock inference procedures exhibit one or more weaknesses, namely they achieve limited scalability to trees with large numbers of taxa, impose model misspecification, or require a priori knowledge of the existence and location of clocks. To overcome these challenges, we present an autocorrelated, Bayesian model of heritable clock rate evolution that leverages heavy-tailed priors with mean zero to shrink increments of change between branch-specific clocks. We further develop an efficient Hamiltonian Monte Carlo sampler that exploits closed form gradient computations to scale our model to large trees. Inference under our shrinkage clock exhibits a speed-up compared to the popular random local clock when estimating branch-specific clock rates on a variety of simulated datasets. This speed-up increases with the size of the problem. We further show our shrinkage clock recovers known local clocks within a rodent and mammalian phylogeny. Finally, in a problem that once appeared computationally impractical, we investigate the heritable clock structure of various surface glycoproteins of influenza A virus in the absence of prior knowledge about clock placement. We implement our shrinkage clock and make it publicly available in the BEAST software package.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Evolución Molecular / Mamíferos Límite: Animals Idioma: En Revista: Mol Biol Evol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Evolución Molecular / Mamíferos Límite: Animals Idioma: En Revista: Mol Biol Evol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos