Your browser doesn't support javascript.
loading
Globin phylogeny, evolution and function, the newest update.
Schuster, Claudio David; Salvatore, Franco; Moens, Luc; Martí, Marcelo Adrián.
Afiliación
  • Schuster CD; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina.
  • Salvatore F; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Ciudad Autónoma de Buenos Aires, Argentina.
  • Moens L; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina.
  • Martí MA; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Ciudad Autónoma de Buenos Aires, Argentina.
Proteins ; 92(6): 720-734, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38192262
ABSTRACT
Our globin census update allows us to refine our vision of globin origin, evolution, and structure to function relationship in the context of the currently accepted tree of life. The modern globin domain originates as a single domain, three-over-three α-helical folded structure before the diversification of the kingdoms of life (Bacteria, Archaea, Eukarya). Together with the diversification of prokaryotes, three monophyletic globin families (M, S, and T) emerged, most likely in Proteobacteria and Actinobacteria, displaying specific sequence and structural features, and spread by vertical and horizontal gene transfer, most probably already present in the last universal common ancestor (LUCA). Non-globin domains were added, and eventually lost again, creating multi-domain structures in key branches of M- (FHb and Adgb) and the vast majority of S globins, which with their coevolved multi-domain architectures, have predominantly "sensor" functions. Single domain T-family globins diverged into four major groups and most likely display functions related to reactive nitrogen and oxygen species (RNOS) chemistry, as well as oxygen storage/transport which drives the evolution of its major branches with their characteristic key distal residues (B10, E11, E7, and G8). M-family evolution also lead to distinctive major types (FHb and Fgb, Ngb, Adgb, GbX vertebrate Gbs), and shows the shift from high oxygen affinity controlled by TyrB10-Gln/AsnE11 likely related to RNOS chemistry in microorganisms, to a moderate oxygen affinity storage/transport function controlled by hydrophobic B10/E11-HisE7 in multicellular animals.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Filogenia / Globinas / Evolución Molecular Límite: Animals / Humans Idioma: En Revista: Proteins Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Argentina

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Filogenia / Globinas / Evolución Molecular Límite: Animals / Humans Idioma: En Revista: Proteins Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Argentina