Your browser doesn't support javascript.
loading
Strain Effects in Ru-Au Bimetallic Aerogels Boost Electrocatalytic Hydrogen Evolution.
Wei, Wei; Guo, Fei; Wang, Cui; Wang, Lingwei; Sheng, Zhizhi; Wu, Xiaodong; Cai, Bin; Eychmüller, Alexander.
Afiliación
  • Wei W; School of Chemistry and Chemical Engineering, Public Experiment and Service Center, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China.
  • Guo F; Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069, Dresden, Germany.
  • Wang C; School of Chemistry and Chemical Engineering, Public Experiment and Service Center, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China.
  • Wang L; Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069, Dresden, Germany.
  • Sheng Z; School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
  • Wu X; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
  • Cai B; College of Materials Science and Engineering, Nanjing Tech University, Puzhu South Road 30, Nanjing, 210009, China.
  • Eychmüller A; School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
Small ; 20(25): e2310603, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38279621
ABSTRACT
To improve the sluggish kinetics of the hydrogen evolution reaction (HER), a key component in water-splitting applications, there is an urgent desire to develop efficient, cost-effective, and stable electrocatalysts. Strain engineering is proving an efficient strategy for increasing the catalytic activity of electrocatalysts. This work presents the development of Ru-Au bimetallic aerogels by a simple one-step in situ reduction-gelation approach, which exhibits strain effects and electron transfer to create a remarkable HER activity and stability in an alkaline environment. The surface strain induced by the bimetallic segregated structure shifts the d-band center downward, enhancing catalysis by balancing the processes of water dissociation, OH* adsorption, and H* adsorption. Specifically, the optimized catalyst shows low overpotentials of only 24.1 mV at a current density of 10 mA cm-2 in alkaline electrolytes, surpassing commercial Pt/C. This study can contribute to the understanding of strain engineering in bimetallic electrocatalysts for HER at the atomic scale.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China