Your browser doesn't support javascript.
loading
Complex regulatory networks influence pluripotent cell state transitions in human iPSCs.
Arthur, Timothy D; Nguyen, Jennifer P; D'Antonio-Chronowska, Agnieszka; Matsui, Hiroko; Silva, Nayara S; Joshua, Isaac N; Luchessi, André D; Greenwald, William W Young; D'Antonio, Matteo; Pera, Martin F; Frazer, Kelly A.
Afiliación
  • Arthur TD; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA.
  • Nguyen JP; Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA.
  • D'Antonio-Chronowska A; Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA.
  • Matsui H; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA.
  • Silva NS; Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
  • Joshua IN; Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
  • Luchessi AD; Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
  • D'Antonio M; Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil.
  • Pera MF; Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil.
  • Frazer KA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA.
Nat Commun ; 15(1): 1664, 2024 Feb 23.
Article en En | MEDLINE | ID: mdl-38395976
ABSTRACT
Stem cells exist in vitro in a spectrum of interconvertible pluripotent states. Analyzing hundreds of hiPSCs derived from different individuals, we show the proportions of these pluripotent states vary considerably across lines. We discover 13 gene network modules (GNMs) and 13 regulatory network modules (RNMs), which are highly correlated with each other suggesting that the coordinated co-accessibility of regulatory elements in the RNMs likely underlie the coordinated expression of genes in the GNMs. Epigenetic analyses reveal that regulatory networks underlying self-renewal and pluripotency are more complex than previously realized. Genetic analyses identify thousands of regulatory variants that overlapped predicted transcription factor binding sites and are associated with chromatin accessibility in the hiPSCs. We show that the master regulator of pluripotency, the NANOG-OCT4 Complex, and its associated network are significantly enriched for regulatory variants with large effects, suggesting that they play a role in the varying cellular proportions of pluripotency states between hiPSCs. Our work bins tens of thousands of regulatory elements in hiPSCs into discrete regulatory networks, shows that pluripotency and self-renewal processes have a surprising level of regulatory complexity, and suggests that genetic factors may contribute to cell state transitions in human iPSC lines.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células Madre Pluripotentes Inducidas Límite: Humans Idioma: En Revista: Nat Commun / Nature communications Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Células Madre Pluripotentes Inducidas Límite: Humans Idioma: En Revista: Nat Commun / Nature communications Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos