Your browser doesn't support javascript.
loading
Hybridization and gene expression: Beyond differentially expressed genes.
Runemark, Anna; Moore, Emily C; Larson, Erica L.
Afiliación
  • Runemark A; Department of Biology, Lund University, Lund, Sweden.
  • Moore EC; Department of Biological Sciences, University of Denver, Denver, Colorado, USA.
  • Larson EL; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
Mol Ecol ; : e17303, 2024 Feb 27.
Article en En | MEDLINE | ID: mdl-38411307
ABSTRACT
Gene expression has a key role in reproductive isolation, and studies of hybrid gene expression have identified mechanisms causing hybrid sterility. Here, we review the evidence for altered gene expression following hybridization and outline the mechanisms shown to contribute to altered gene expression in hybrids. Transgressive gene expression, transcending that of both parental species, is pervasive in early generation sterile hybrids, but also frequently observed in viable, fertile hybrids. We highlight studies showing that hybridization can result in transgressive gene expression, also in established hybrid lineages or species. Such extreme patterns of gene expression in stabilized hybrid taxa suggest that altered hybrid gene expression may result in hybridization-derived evolutionary novelty. We also conclude that while patterns of misexpression in hybrids are well documented, the understanding of the mechanisms causing misexpression is lagging. We argue that jointly assessing differences in cell composition and cell-specific changes in gene expression in hybrids, in addition to assessing changes in chromatin and methylation, will significantly advance our understanding of the basis of altered gene expression. Moreover, uncovering to what extent evolution of gene expression results in altered expression for individual genes, or entire networks of genes, will advance our understanding of how selection moulds gene expression. Finally, we argue that jointly studying the dual roles of altered hybrid gene expression, serving both as a mechanism for reproductive isolation and as a substrate for hybrid ecological adaptation, will lead to significant advances in our understanding of the evolution of gene expression.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Mol Ecol Asunto de la revista: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Mol Ecol Asunto de la revista: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: Suecia