Your browser doesn't support javascript.
loading
Elemental geochemical evidence for the river-derived sources of trace metals in surface sediments from Hangzhou Bay, East China Sea.
Liu, Qiang; Liao, Yibo; Zheng, Yingjuan; Jin, Haiyan; Huang, Wei; Liu, Qinghe; Shou, Lu; Zeng, Jiangning; Chen, Quanzhen; Chen, Jianfang.
Afiliación
  • Liu Q; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Nearshore Engineering Environment and Ecologi
  • Liao Y; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Nearshore Engineering Environment and Ecologi
  • Zheng Y; Chinese Academy of Environmental Sciences, Beijing, China.
  • Jin H; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Hangzhou, China.
  • Huang W; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Nearshore Engineering Environment and Ecologi
  • Liu Q; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Hangzhou, China.
  • Shou L; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Hangzhou, China. Electronic address: shoulu981@sio.org.cn.
  • Zeng J; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Hangzhou, China; Observation and Research Station of Marine Ecosystem in th
  • Chen Q; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou, China.
  • Chen J; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Hangzhou, China.
Environ Res ; 250: 118588, 2024 Jun 01.
Article en En | MEDLINE | ID: mdl-38428563
ABSTRACT
Coastal estuaries are often heavily subject to riverine influences by the inputs of sediment from terrestrial sources. Hangzhou Bay (HZB) is threatened by the riverine derived trace metals from two large rivers of Qiantang River (QTR) and Yangtze River (YZR). However, previous studies mainly focused on the incidental transport from the largest river in China (YZR) and failed to simultaneously evaluate the contributions of these two rivers, especially the directly flowing river of QTR, by their trace elemental geochemical composition and distribution. Herein, a comprehensive study identified the river-derived sources of multiple trace metals in surface sediments which transported from both of the rivers. The sampling stations were separated into three regions of YZR, HZB, and QTR based on their spatial distributions of sediment grain size and components. The significant variations for most of the trace metals concentrations, except for Cd, Th, and U, were found among three regions (χ2 ≥ 8.22, p ≤ 0.016). The highest concentrations in HZB were mainly resulted from the grain size effect (68.82% of the total variance), while the highest concentrations of Sr, Cd, and Ba in YZR and Zr and Hf in QTR were attributed to the anthropogenic source (11.90%) and mineral composition (6.21%) of river basins. After normalized the diversity of multiple trace metals concentrations and the influence of grain size by ratios of Igeo and EFLi, three regions were effectively distinguished. It was indicated that As, Cd, and Sb were enriched in the sediments of rivers by anthropogenic source (EFLi > 1.5 and/or Igeo > 1). The results evidenced that, after removing the influence of grain size, elemental geochemical composition of the surface sediments confidently identified the river-derived anthropogenic sources of the enriched trace metals from two major rivers, and largely from YZR.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Monitoreo del Ambiente / Bahías / Sedimentos Geológicos / Ríos País/Región como asunto: Asia Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Monitoreo del Ambiente / Bahías / Sedimentos Geológicos / Ríos País/Región como asunto: Asia Idioma: En Revista: Environ Res Año: 2024 Tipo del documento: Article