Your browser doesn't support javascript.
loading
Digital light processing 3D printing of microfluidic devices targeting high-pressure liquid-phase separations.
Amini, Ali; Themelis, Thomas; Ottevaere, Heidi; De Vos, Jelle; Eeltink, Sebastiaan.
Afiliación
  • Amini A; Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Pleinlaan 2, B-1050, Brussels, Belgium.
  • Themelis T; Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Pleinlaan 2, B-1050, Brussels, Belgium.
  • Ottevaere H; Vrije Universiteit Brussel (VUB), Department of Applied Physics and Photonics, Brussels Photonics, Brussels, Belgium.
  • De Vos J; Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Pleinlaan 2, B-1050, Brussels, Belgium.
  • Eeltink S; RIC Group, President Kennedypark 26, B-8500, Kortrijk, Belgium.
Mikrochim Acta ; 191(3): 171, 2024 Mar 02.
Article en En | MEDLINE | ID: mdl-38430344
ABSTRACT
This paper focuses on 3D printing using digital light processing (DLP) to create microchannel devices with inner diameters of 100, 200, and 500 µm and cater flow-through applications within the realm of analytical chemistry, in particular high-pressure liquid chromatographic separations. Effects of layer thickness and exposure time on channel dimensions and surface roughness were systematically investigated. Utilizing a commercially accessible 3D printer and acrylate resin formulation, we fabricated 100-500 µm i.d. squared and circular channel designs minimizing average surface roughness (< 20%) by applying a 20-µm layer thickness and exposure times ranging from 1.1 to 0.7 s. Pressure resistance was measured by encasing microdevices in an aluminum chip holder that integrated flat-bottom polyetheretherketon (PEEK) nanoports allowing to establish the micro-to-macro interface to the HPLC instrument. After thermal post-curing and finetuning the clamping force of the chip holder, a maximum pressure resistance of 650 bar (1.5% RSD) was reached (n = 3). A polymer monolithic support structure was successfully synthesized in situ with the confines of a 500 µm i.d. 3D printed microchannel. A proof-of-concept of a reversed-phase chromatographic gradient separation of intact proteins is demonstrated using an aqueous-organic mobile-phase with isopropanol as organic modifier.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Mikrochim Acta Año: 2024 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Mikrochim Acta Año: 2024 Tipo del documento: Article País de afiliación: Bélgica