Octopus-like Microstructure of Graphene Oxide Generated through Laser-Microdroplet Interaction for Adhesive Coating.
ACS Nano
; 18(11): 7877-7889, 2024 Mar 19.
Article
en En
| MEDLINE
| ID: mdl-38450636
ABSTRACT
The octopus, as one of the most famous celebrities in bionics, has provided various inspirations for camouflage materials, soft-bodied robots, and flexible grabbers. The miniaturization of such structures will help the development of microrobots, microdelivery of drugs, and surface coating. With the lack of relevant effective preparation approaches, however, the generation of such octopus-like structures with a size of â¼1 µm or below is challenging. Here, we develop an approach based on laser-microdroplet interaction for generating an octopus-like structure with a size of â¼1 µm. The developed approach uses laser-microdroplet interaction to provide a large driving force of â¼107 Pa at a confined space (<1 µm), locally crumpling the precursor in the microdroplet. The locally crumpled particles possess both crumpled and uncrumpled structures that resemble an octopus's head and soft body. In the adhesion test, the octopus-like particles exhibit high adhesive properties in air, in water, and on a flexible substrate. In the electrochemical test, the octopus-like particles on flexible electrodes show good electrochemical and adhesive properties under hundreds of bending cycles. Benefiting from the combination of crumpled and uncrumpled morphologies, the created particles with octopus-like microstructure are demonstrated to possess comprehensive performance, exhibiting wide application potentials in the fields of microswimmers, surface coatings, and electrochemistry. Additionally, the method developed in this work has the advantages of concentrated energy in a confined space, displaying prospective potentials in micro- and nanoprocessing.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
ACS Nano
Año:
2024
Tipo del documento:
Article