Your browser doesn't support javascript.
loading
CO Cofeeding Affects Product Distribution in CH3Cl Coupling over ZSM-5 Zeolite: Pressure Twists the Plot.
Zhang, Zihao; Vanni, Matteo; Wu, Xiangkun; Hemberger, Patrick; Bodi, Andras; Mitchell, Sharon; Pérez-Ramírez, Javier.
Afiliación
  • Zhang Z; Paul Scherrer Institute, 5232, Villigen, Switzerland.
  • Vanni M; Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
  • Wu X; Paul Scherrer Institute, 5232, Villigen, Switzerland.
  • Hemberger P; Paul Scherrer Institute, 5232, Villigen, Switzerland.
  • Bodi A; Paul Scherrer Institute, 5232, Villigen, Switzerland.
  • Mitchell S; Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
  • Pérez-Ramírez J; Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
Angew Chem Int Ed Engl ; 63(17): e202401060, 2024 Apr 22.
Article en En | MEDLINE | ID: mdl-38451557
ABSTRACT
C1 coupling reactions over zeolite catalysts are central to sustainable chemical production strategies. However, questions persist regarding the involvement of CO in ketene formation, and the impact of this elusive oxygenate intermediate on reactivity patterns. Using operando photoelectron photoion coincidence spectroscopy (PEPICO), we investigate the role of CO in methyl chloride conversion to hydrocarbons (MCTH), a prospective process for methane valorization with a reaction network akin to methanol to hydrocarbons (MTH) but without oxygenate intermediates. Our findings reveal the transformative role of CO in MCTH at the low pressures, inducing ketene formation in MCTH and boosting olefin production, confirming the Koch carbonylation step in the initial stages of C1 coupling. We uncover pressure-dependent product distributions driven by CO-induced ketene formation, and its subsequent desorption from the zeolite surface, which is enhanced at low pressure. Inspired by the above results, extension of the co-feeding approach to CH3OH as another simple oxygenate showcases the additional potential for improved catalyst stability in MCTH at ambient pressure.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: Suiza