Your browser doesn't support javascript.
loading
Multi-step strategies for synergistic treatment of urinary tract infections based on D-xylose-decorated antimicrobial peptide carbon dots.
Miao, Chunhui; Zhang, Yajie; Liu, Guowen; Yang, Jianming; Yu, Kaiyuan; Lv, Junqiang; Liu, Ran; Yao, Zhi; Niu, Yuanjie; Wang, Xiaojuan; Wang, Quan.
Afiliación
  • Miao C; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic M
  • Zhang Y; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic M
  • Liu G; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic M
  • Yang J; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic M
  • Yu K; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic M
  • Lv J; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic M
  • Liu R; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic M
  • Yao Z; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic M
  • Niu Y; The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, 300211, China; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), Tianjin, 300211, China. Electronic address: niuyuanjie9317@163.com.
  • Wang X; The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, 300211, China; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), Tianjin, 300211, China. Electronic address: xjwang@tmu.edu.cn.
  • Wang Q; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic M
Biomaterials ; 308: 122547, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38537344
ABSTRACT
Urinary tract infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC), often reoccur due to the formation of intracellular bacterial colonies (IBCs) and antibiotic resistance. Given the significance of YadC for UPEC infection in our previous study, we developed D-xylose-decorated ɛ-poly-L-lysine (εPL)-based carbon dots (D-xyl@εPLCDs) that can be traced, and employed multi-step approaches to elucidate the functional roles of D-xyl@εPLCDs in UPEC infection. Compared to undecorated particles, D-xyl@εPLCDs demonstrate YadC-dependent bacterial targeting and exhibit enhanced bactericidal activities both intracellularly and extracellularly. Moreover, pre-treatment of D-xyl@εPLCDs before infection blocked the subsequent adhesion and invasion of UPEC to bladder epithelial cells 5637. Increase of ROS production and innate immune responses were observed in bladder epithelial cells 5637 treated with D-xyl@εPLCDs. In addition, treatment of D-xyl@εPLCDs post-infection facilitated clearance of UPEC in the bladders of the UTI mouse model, and reduced ultimate number of neutrophils, macrophages and inflammatory responses raised by invaded bacteria. Collectively, we presented a comprehensive evaluating system to show that D-xyl@εPLCDs exhibits superior bactericidal effects against UPEC, making them a promising candidate for drug development in clinical UTI therapeutics.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Infecciones Urinarias / Xilosa / Carbono / Escherichia coli Uropatógena Límite: Animals / Female / Humans Idioma: En Revista: Biomaterials Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Infecciones Urinarias / Xilosa / Carbono / Escherichia coli Uropatógena Límite: Animals / Female / Humans Idioma: En Revista: Biomaterials Año: 2024 Tipo del documento: Article