Your browser doesn't support javascript.
loading
Calibrating Bayesian Decoders of Neural Spiking Activity.
Wei 魏赣超, Ganchao; Tajik Mansouri زینب تاجیک منصوری, Zeinab; Wang 王晓婧, Xiaojing; Stevenson, Ian H.
Afiliación
  • Wei 魏赣超 G; Department of Statistical Science, Duke University, Durham, North Carolina 27708.
  • Tajik Mansouri زینب تاجیک منصوری Z; Departments of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269.
  • Wang 王晓婧 X; Statistics, University of Connecticut, Storrs, Connecticut 06269.
  • Stevenson IH; Departments of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269 ian.stevenson@uconn.edu.
J Neurosci ; 44(18)2024 May 01.
Article en En | MEDLINE | ID: mdl-38538143
ABSTRACT
Accurately decoding external variables from observations of neural activity is a major challenge in systems neuroscience. Bayesian decoders, which provide probabilistic estimates, are some of the most widely used. Here we show how, in many common settings, the probabilistic predictions made by traditional Bayesian decoders are overconfident. That is, the estimates for the decoded stimulus or movement variables are more certain than they should be. We then show how Bayesian decoding with latent variables, taking account of low-dimensional shared variability in the observations, can improve calibration, although additional correction for overconfidence is still needed. Using data from males, we examine (1) decoding the direction of grating stimuli from spike recordings in the primary visual cortex in monkeys, (2) decoding movement direction from recordings in the primary motor cortex in monkeys, (3) decoding natural images from multiregion recordings in mice, and (4) decoding position from hippocampal recordings in rats. For each setting, we characterize the overconfidence, and we describe a possible method to correct miscalibration post hoc. Properly calibrated Bayesian decoders may alter theoretical results on probabilistic population coding and lead to brain-machine interfaces that more accurately reflect confidence levels when identifying external variables.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Potenciales de Acción / Teorema de Bayes / Neuronas Límite: Animals Idioma: En Revista: J Neurosci Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Potenciales de Acción / Teorema de Bayes / Neuronas Límite: Animals Idioma: En Revista: J Neurosci Año: 2024 Tipo del documento: Article