Your browser doesn't support javascript.
loading
Graph machine learning for integrated multi-omics analysis.
Valous, Nektarios A; Popp, Ferdinand; Zörnig, Inka; Jäger, Dirk; Charoentong, Pornpimol.
Afiliación
  • Valous NA; Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany. nek.valous@nct-heidelberg.de.
  • Popp F; Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany. nek.valous@nct-heidelberg.de.
  • Zörnig I; Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
  • Jäger D; Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
  • Charoentong P; Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.
Br J Cancer ; 131(2): 205-211, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38729996
ABSTRACT
Multi-omics experiments at bulk or single-cell resolution facilitate the discovery of hypothesis-generating biomarkers for predicting response to therapy, as well as aid in uncovering mechanistic insights into cellular and microenvironmental processes. Many methods for data integration have been developed for the identification of key elements that explain or predict disease risk or other biological outcomes. The heterogeneous graph representation of multi-omics data provides an advantage for discerning patterns suitable for predictive/exploratory analysis, thus permitting the modeling of complex relationships. Graph-based approaches-including graph neural networks-potentially offer a reliable methodological toolset that can provide a tangible alternative to scientists and clinicians that seek ideas and implementation strategies in the integrated analysis of their omics sets for biomedical research. Graph-based workflows continue to push the limits of the technological envelope, and this perspective provides a focused literature review of research articles in which graph machine learning is utilized for integrated multi-omics data analyses, with several examples that demonstrate the effectiveness of graph-based approaches.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aprendizaje Automático Límite: Humans Idioma: En Revista: Br J Cancer Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aprendizaje Automático Límite: Humans Idioma: En Revista: Br J Cancer Año: 2024 Tipo del documento: Article País de afiliación: Alemania