A general framework for developing computable clinical phenotype algorithms.
J Am Med Inform Assoc
; 31(8): 1785-1796, 2024 Aug 01.
Article
en En
| MEDLINE
| ID: mdl-38748991
ABSTRACT
OBJECTIVE:
To present a general framework providing high-level guidance to developers of computable algorithms for identifying patients with specific clinical conditions (phenotypes) through a variety of approaches, including but not limited to machine learning and natural language processing methods to incorporate rich electronic health record data. MATERIALS ANDMETHODS:
Drawing on extensive prior phenotyping experiences and insights derived from 3 algorithm development projects conducted specifically for this purpose, our team with expertise in clinical medicine, statistics, informatics, pharmacoepidemiology, and healthcare data science methods conceptualized stages of development and corresponding sets of principles, strategies, and practical guidelines for improving the algorithm development process.RESULTS:
We propose 5 stages of algorithm development and corresponding principles, strategies, and guidelines (1) assessing fitness-for-purpose, (2) creating gold standard data, (3) feature engineering, (4) model development, and (5) model evaluation. DISCUSSION ANDCONCLUSION:
This framework is intended to provide practical guidance and serve as a basis for future elaboration and extension.Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Fenotipo
/
Algoritmos
/
Procesamiento de Lenguaje Natural
/
Registros Electrónicos de Salud
Límite:
Humans
Idioma:
En
Revista:
J Am Med Inform Assoc
Asunto de la revista:
INFORMATICA MEDICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos