Your browser doesn't support javascript.
loading
A general framework for developing computable clinical phenotype algorithms.
Carrell, David S; Floyd, James S; Gruber, Susan; Hazlehurst, Brian L; Heagerty, Patrick J; Nelson, Jennifer C; Williamson, Brian D; Ball, Robert.
Afiliación
  • Carrell DS; Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, United States.
  • Floyd JS; Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, United States.
  • Gruber S; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, United States.
  • Hazlehurst BL; Putnam Data Sciences, LLC, Cambridge, MA 02139, United States.
  • Heagerty PJ; Center for Health Research, Kaiser Permanente Northwest, Portland, OR 97227, United States.
  • Nelson JC; Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA 98195, United States.
  • Williamson BD; Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, United States.
  • Ball R; Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, United States.
J Am Med Inform Assoc ; 31(8): 1785-1796, 2024 Aug 01.
Article en En | MEDLINE | ID: mdl-38748991
ABSTRACT

OBJECTIVE:

To present a general framework providing high-level guidance to developers of computable algorithms for identifying patients with specific clinical conditions (phenotypes) through a variety of approaches, including but not limited to machine learning and natural language processing methods to incorporate rich electronic health record data. MATERIALS AND

METHODS:

Drawing on extensive prior phenotyping experiences and insights derived from 3 algorithm development projects conducted specifically for this purpose, our team with expertise in clinical medicine, statistics, informatics, pharmacoepidemiology, and healthcare data science methods conceptualized stages of development and corresponding sets of principles, strategies, and practical guidelines for improving the algorithm development process.

RESULTS:

We propose 5 stages of algorithm development and corresponding principles, strategies, and guidelines (1) assessing fitness-for-purpose, (2) creating gold standard data, (3) feature engineering, (4) model development, and (5) model evaluation. DISCUSSION AND

CONCLUSION:

This framework is intended to provide practical guidance and serve as a basis for future elaboration and extension.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fenotipo / Algoritmos / Procesamiento de Lenguaje Natural / Registros Electrónicos de Salud Límite: Humans Idioma: En Revista: J Am Med Inform Assoc Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fenotipo / Algoritmos / Procesamiento de Lenguaje Natural / Registros Electrónicos de Salud Límite: Humans Idioma: En Revista: J Am Med Inform Assoc Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos