Your browser doesn't support javascript.
loading
The role of small RNAs in resistant melon cultivar against Phelipanche aegyptiaca parasitization.
Mao, Jian-Cai; Yan, Miao; Li, Jun-Hua; Yang, Jun-Yan; Wang, Hao-Jie.
Afiliación
  • Mao JC; Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
  • Yan M; Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
  • Li JH; Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
  • Yang JY; Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
  • Wang HJ; Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
Front Microbiol ; 15: 1408926, 2024.
Article en En | MEDLINE | ID: mdl-38774502
ABSTRACT
Bidirectional trans-kingdom RNA silencing, a pivotal factor in plant-pathogen interactions, remains less explored in plant host-parasite dynamics. Here, using small RNA sequencing in melon root systems, we investigated microRNA (miRNA) expression variation in resistant and susceptible cultivars pre-and post-infection by the parasitic plant, broomrape. This approach revealed 979 known miRNAs and 110 novel miRNAs across 110 families. When comparing susceptible (F0) and resistant (R0) melon lines with broomrape infection (F25 and R25), 39 significantly differentially expressed miRNAs were observed in F25 vs. F0, 35 in R25 vs. R0, and 5 in R25 vs. F25. Notably, two miRNAs consistently exhibited differential expression across all comparisons, targeting genes linked to plant disease resistance. This suggests their pivotal role in melon's defense against broomrape. The target genes of these miRNAs were confirmed via degradome sequencing and validated by qRT-PCR, ensuring reliable sequencing outcomes. GO and KEGG analyses shed light on the molecular functions and pathways of these differential miRNAs. Furthermore, our study unveiled four trans-kingdom miRNAs, forming a foundation for exploring melon's resistance to broomrape.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Front Microbiol Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Front Microbiol Año: 2024 Tipo del documento: Article País de afiliación: China