Your browser doesn't support javascript.
loading
A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays.
Buccino, Alessio Paolo; Damart, Tanguy; Bartram, Julian; Mandge, Darshan; Xue, Xiaohan; Zbili, Mickael; Gänswein, Tobias; Jaquier, Aurélien; Emmenegger, Vishalini; Markram, Henry; Hierlemann, Andreas; Van Geit, Werner.
Afiliación
  • Buccino AP; Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland alessiop.buccino@gmail.com.
  • Damart T; Blue Brain Project, École polytechnique fédérale de Lausanne, Campus Biotech, 1202 Geneva, Switzerland tanguy.damart@ksvi.mff.cuni.cz.
  • Bartram J; Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland julian.bartram@bsse.ethz.ch.
  • Mandge D; Blue Brain Project, École polytechnique fédérale de Lausanne, Campus Biotech, 1202 Geneva, Switzerland darshan.mandge@epfl.ch.
  • Xue X; Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland xiaohan.xue@bsse.ethz.ch.
  • Zbili M; Blue Brain Project, École polytechnique fédérale de Lausanne, Campus Biotech, 1202 Geneva, Switzerland zbili.mickael@gmail.com.
  • Gänswein T; Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland tobias.gaenswein@bsse.ethz.ch.
  • Jaquier A; Blue Brain Project, École polytechnique fédérale de Lausanne, Campus Biotech, 1202 Geneva, Switzerland aurelien.jaquier@epfl.ch.
  • Emmenegger V; Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland vishalini.emmenegger@bsse.ethz.ch.
  • Markram H; Blue Brain Project, École polytechnique fédérale de Lausanne, Campus Biotech, 1202 Geneva, Switzerland henry.markram@epfl.ch.
  • Hierlemann A; Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland andreas.hierlemann@bsse.ethz.ch.
  • Van Geit W; Blue Brain Project, École polytechnique fédérale de Lausanne, Campus Biotech, 1202 Geneva, Switzerland Present address: Foundation for Research on Information Technologies in Society (IT'IS), Zurich 8004, Switzerland werner.vangeit@gmail.com.
Neural Comput ; 36(7): 1286-1331, 2024 Jun 07.
Article en En | MEDLINE | ID: mdl-38776965
ABSTRACT
In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimental data are then used to fit the many parameters of the model. While patching of the soma is currently the gold-standard approach to build multicompartment models, several studies have also evidenced a richness of dynamics in dendritic and axonal sections. Recording from the soma alone makes it hard to observe and correctly parameterize the activity of nonsomatic compartments. In order to provide a richer set of data as input to multicompartment models, we here investigate the combination of somatic patch-clamp recordings with recordings of high-density microelectrode arrays (HD-MEAs). HD-MEAs enable the observation of extracellular potentials and neural activity of neuronal compartments at subcellular resolution. In this work, we introduce a novel framework to combine patch-clamp and HD-MEA data to construct multicompartment models. We first validate our method on a ground-truth model with known parameters and show that the use of features extracted from extracellular signals, in addition to intracellular ones, yields models enabling better fits than using intracellular features alone. We also demonstrate our procedure using experimental data by constructing cell models from in vitro cell cultures. The proposed multimodal fitting procedure has the potential to augment the modeling efforts of the computational neuroscience community and provide the field with neuronal models that are more realistic and can be better validated.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas de Placa-Clamp / Microelectrodos / Modelos Neurológicos / Neuronas Límite: Animals Idioma: En Revista: Neural Comput Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Técnicas de Placa-Clamp / Microelectrodos / Modelos Neurológicos / Neuronas Límite: Animals Idioma: En Revista: Neural Comput Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Suiza