Your browser doesn't support javascript.
loading
Missing Wedge Completion via Unsupervised Learning with Coordinate Networks.
Van Veen, Dave; Galaz-Montoya, Jesús G; Shen, Liyue; Baldwin, Philip; Chaudhari, Akshay S; Lyumkis, Dmitry; Schmid, Michael F; Chiu, Wah; Pauly, John.
Afiliación
  • Van Veen D; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
  • Galaz-Montoya JG; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
  • Shen L; Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
  • Baldwin P; Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA.
  • Chaudhari AS; Department of Genetics, The Salk Institute of Biological Sciences, La Jolla, CA 92037, USA.
  • Lyumkis D; Department of Radiology, Stanford University, Stanford, CA 94305, USA.
  • Schmid MF; Department of Genetics, The Salk Institute of Biological Sciences, La Jolla, CA 92037, USA.
  • Chiu W; Graduate School of Biological Sciences, University of California San Diego, La Jolla, CA 92037, USA.
  • Pauly J; Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
Int J Mol Sci ; 25(10)2024 May 17.
Article en En | MEDLINE | ID: mdl-38791508
ABSTRACT
Cryogenic electron tomography (cryoET) is a powerful tool in structural biology, enabling detailed 3D imaging of biological specimens at a resolution of nanometers. Despite its potential, cryoET faces challenges such as the missing wedge problem, which limits reconstruction quality due to incomplete data collection angles. Recently, supervised deep learning methods leveraging convolutional neural networks (CNNs) have considerably addressed this issue; however, their pretraining requirements render them susceptible to inaccuracies and artifacts, particularly when representative training data is scarce. To overcome these limitations, we introduce a proof-of-concept unsupervised learning approach using coordinate networks (CNs) that optimizes network weights directly against input projections. This eliminates the need for pretraining, reducing reconstruction runtime by 3-20× compared to supervised methods. Our in silico results show improved shape completion and reduction of missing wedge artifacts, assessed through several voxel-based image quality metrics in real space and a novel directional Fourier Shell Correlation (FSC) metric. Our study illuminates benefits and considerations of both supervised and unsupervised approaches, guiding the development of improved reconstruction strategies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Redes Neurales de la Computación / Aprendizaje Automático no Supervisado Idioma: En Revista: Int J Mol Sci Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Redes Neurales de la Computación / Aprendizaje Automático no Supervisado Idioma: En Revista: Int J Mol Sci Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos