Your browser doesn't support javascript.
loading
Large-scale foundation model on single-cell transcriptomics.
Hao, Minsheng; Gong, Jing; Zeng, Xin; Liu, Chiming; Guo, Yucheng; Cheng, Xingyi; Wang, Taifeng; Ma, Jianzhu; Zhang, Xuegong; Song, Le.
Afiliación
  • Hao M; MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China.
  • Gong J; BioMap, Beijing, China.
  • Zeng X; BioMap, Beijing, China.
  • Liu C; BioMap, Beijing, China.
  • Guo Y; BioMap, Beijing, China.
  • Cheng X; BioMap, Beijing, China.
  • Wang T; BioMap, Beijing, China.
  • Ma J; BioMap, Beijing, China.
  • Zhang X; Department of Electrical Engineering, Tsinghua University, Beijing, China. majianzhu@tsinghua.edu.cn.
  • Song L; Institute for AI Industry Research, Tsinghua University, Beijing, China. majianzhu@tsinghua.edu.cn.
Nat Methods ; 21(8): 1481-1491, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38844628
ABSTRACT
Large pretrained models have become foundation models leading to breakthroughs in natural language processing and related fields. Developing foundation models for deciphering the 'languages' of cells and facilitating biomedical research is promising yet challenging. Here we developed a large pretrained model scFoundation, also named 'xTrimoscFoundationα', with 100 million parameters covering about 20,000 genes, pretrained on over 50 million human single-cell transcriptomic profiles. scFoundation is a large-scale model in terms of the size of trainable parameters, dimensionality of genes and volume of training data. Its asymmetric transformer-like architecture and pretraining task design empower effectively capturing complex context relations among genes in a variety of cell types and states. Experiments showed its merit as a foundation model that achieved state-of-the-art performances in a diverse array of single-cell analysis tasks such as gene expression enhancement, tissue drug response prediction, single-cell drug response classification, single-cell perturbation prediction, cell type annotation and gene module inference.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Perfilación de la Expresión Génica / Análisis de la Célula Individual / Transcriptoma Límite: Humans Idioma: En Revista: Nat Methods Asunto de la revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Perfilación de la Expresión Génica / Análisis de la Célula Individual / Transcriptoma Límite: Humans Idioma: En Revista: Nat Methods Asunto de la revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Año: 2024 Tipo del documento: Article País de afiliación: China