Your browser doesn't support javascript.
loading
Systematic assessment of long-read RNA-seq methods for transcript identification and quantification.
Pardo-Palacios, Francisco J; Wang, Dingjie; Reese, Fairlie; Diekhans, Mark; Carbonell-Sala, Sílvia; Williams, Brian; Loveland, Jane E; De María, Maite; Adams, Matthew S; Balderrama-Gutierrez, Gabriela; Behera, Amit K; Gonzalez Martinez, Jose M; Hunt, Toby; Lagarde, Julien; Liang, Cindy E; Li, Haoran; Meade, Marcus Jerryd; Moraga Amador, David A; Prjibelski, Andrey D; Birol, Inanc; Bostan, Hamed; Brooks, Ashley M; Çelik, Muhammed Hasan; Chen, Ying; Du, Mei R M; Felton, Colette; Göke, Jonathan; Hafezqorani, Saber; Herwig, Ralf; Kawaji, Hideya; Lee, Joseph; Li, Jian-Liang; Lienhard, Matthias; Mikheenko, Alla; Mulligan, Dennis; Nip, Ka Ming; Pertea, Mihaela; Ritchie, Matthew E; Sim, Andre D; Tang, Alison D; Wan, Yuk Kei; Wang, Changqing; Wong, Brandon Y; Yang, Chen; Barnes, If; Berry, Andrew E; Capella-Gutierrez, Salvador; Cousineau, Alyssa; Dhillon, Namrita; Fernandez-Gonzalez, Jose M.
Afiliación
  • Pardo-Palacios FJ; Institute for Integrative Systems Biology, Spanish National Research Council (CSIC), Paterna, Spain.
  • Wang D; Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
  • Reese F; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
  • Diekhans M; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
  • Carbonell-Sala S; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
  • Williams B; UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.
  • Loveland JE; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
  • De María M; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
  • Adams MS; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus Hinxton, Cambridge, UK.
  • Balderrama-Gutierrez G; Department of Physiological Sciences, College of Veterinary Medicine, Gainesville, FL, USA.
  • Behera AK; Cherokee Nation System Solutions, contractor to the US Geological Survey-Wetland and Aquatic Research Center, Gainesville, FL, USA.
  • Gonzalez Martinez JM; Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.
  • Hunt T; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
  • Lagarde J; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
  • Liang CE; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA.
  • Li H; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus Hinxton, Cambridge, UK.
  • Meade MJ; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus Hinxton, Cambridge, UK.
  • Moraga Amador DA; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
  • Prjibelski AD; Flomics Biotech, SL, Barcelona, Spain.
  • Birol I; Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.
  • Bostan H; Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
  • Brooks AM; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
  • Çelik MH; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
  • Chen Y; Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA.
  • Du MRM; Department of Computer Science, University of Helsinki, Helsinki, Finland.
  • Felton C; Center for Bioinformatics and Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
  • Göke J; Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.
  • Hafezqorani S; Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
  • Herwig R; Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
  • Kawaji H; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
  • Lee J; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
  • Li JL; Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
  • Lienhard M; Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
  • Mikheenko A; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA.
  • Mulligan D; Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
  • Nip KM; Department of Statistics and Data Science, National University of Singapore, Singapore, Singapore.
  • Pertea M; Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.
  • Ritchie ME; Department Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany.
  • Sim AD; Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
  • Tang AD; Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
  • Wan YK; Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
  • Wang C; Department Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany.
  • Wong BY; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
  • Yang C; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA.
  • Barnes I; Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.
  • Berry AE; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
  • Capella-Gutierrez S; Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
  • Cousineau A; Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
  • Dhillon N; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
  • Fernandez-Gonzalez JM; Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
Nat Methods ; 21(7): 1349-1363, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38849569
ABSTRACT
The Long-read RNA-Seq Genome Annotation Assessment Project Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. Using different protocols and sequencing platforms, the consortium generated over 427 million long-read sequences from complementary DNA and direct RNA datasets, encompassing human, mouse and manatee species. Developers utilized these data to address challenges in transcript isoform detection, quantification and de novo transcript detection. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. Incorporating additional orthogonal data and replicate samples is advised when aiming to detect rare and novel transcripts or using reference-free approaches. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Perfilación de la Expresión Génica / RNA-Seq Límite: Animals / Humans Idioma: En Revista: Nat Methods Asunto de la revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Año: 2024 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Perfilación de la Expresión Génica / RNA-Seq Límite: Animals / Humans Idioma: En Revista: Nat Methods Asunto de la revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Año: 2024 Tipo del documento: Article País de afiliación: España