Your browser doesn't support javascript.
loading
Advancing Force Fields Parameterization: A Directed Graph Attention Networks Approach.
Chen, Gong; Jaffrelot Inizan, Théo; Plé, Thomas; Lagardère, Louis; Piquemal, Jean-Philip; Maday, Yvon.
Afiliación
  • Chen G; Sorbonne Université, CNRS, Université Paris Cité, Laboratoire Jacques-Louis Lions (LJLL), UMR 7598 CNRS, 75005 Paris, France.
  • Jaffrelot Inizan T; Sorbonne Université, Laboratoire de Chimie Théorique (LCT), UMR 7616 CNRS, 75005 Paris, France.
  • Plé T; Sorbonne Université, Laboratoire de Chimie Théorique (LCT), UMR 7616 CNRS, 75005 Paris, France.
  • Lagardère L; Sorbonne Université, Laboratoire de Chimie Théorique (LCT), UMR 7616 CNRS, 75005 Paris, France.
  • Piquemal JP; Sorbonne Université, Laboratoire de Chimie Théorique (LCT), UMR 7616 CNRS, 75005 Paris, France.
  • Maday Y; Sorbonne Université, CNRS, Université Paris Cité, Laboratoire Jacques-Louis Lions (LJLL), UMR 7598 CNRS, 75005 Paris, France.
J Chem Theory Comput ; 20(13): 5558-5569, 2024 Jul 09.
Article en En | MEDLINE | ID: mdl-38875012
ABSTRACT
Force fields (FFs) are an established tool for simulating large and complex molecular systems. However, parametrizing FFs is a challenging and time-consuming task that relies on empirical heuristics, experimental data, and computational data. Recent efforts aim to automate the assignment of FF parameters using pre-existing databases and on-the-fly ab initio data. In this study, we propose a graph-based force field (GB-FFs) model to directly derive parameters for the Generalized Amber Force Field (GAFF) from chemical environments and research into the influence of functional forms. Our end-to-end parametrization approach predicts parameters by aggregating the basic information in directed molecular graphs, eliminating the need for expert-defined procedures and enhances the accuracy and transferability of GAFF across a broader range of molecular complexes. Simulation results are compared to the original GAFF parametrization. In practice, our results demonstrate an improved transferability of the model, showcasing its improved accuracy in modeling intermolecular and torsional interactions, as well as improved solvation free energies. The optimization approach developed in this work is fully applicable to other nonpolarizable FFs as well as to polarizable ones.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Chem Theory Comput Año: 2024 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Chem Theory Comput Año: 2024 Tipo del documento: Article País de afiliación: Francia