Your browser doesn't support javascript.
loading
System-agnostic prediction of pharmaceutical excipient miscibility via computing-as-a-service and experimental validation.
Antipas, Georgios S E; Reul, Regina; Voges, Kristin; Kyeremateng, Samuel O; Ntallis, Nikolaos A; Karalis, Konstantinos T; Miroslaw, Lukasz.
Afiliación
  • Antipas GSE; Molecular Modelling Laboratory, Bahnhofplatz, 6300, Zug, Switzerland. gantipas@mmlpi.ch.
  • Reul R; AbbVie Deutschland GmbH & Co. KG, Development Sciences, 67061, Ludwigshafen, Germany.
  • Voges K; AbbVie Deutschland GmbH & Co. KG, Development Sciences, 67061, Ludwigshafen, Germany.
  • Kyeremateng SO; AbbVie Deutschland GmbH & Co. KG, Development Sciences, 67061, Ludwigshafen, Germany. samuel.kyeremateng@abbvie.com.
  • Ntallis NA; Molecular Modelling Laboratory, Bahnhofplatz, 6300, Zug, Switzerland.
  • Karalis KT; Molecular Modelling Laboratory, Bahnhofplatz, 6300, Zug, Switzerland.
  • Miroslaw L; Azure High Performance Computing and Artificial Intelligence, Microsoft Switzerland, The Circle 02, 8058, Zurich, Switzerland.
Sci Rep ; 14(1): 15106, 2024 07 02.
Article en En | MEDLINE | ID: mdl-38956156
ABSTRACT
We applied computing-as-a-service to the unattended system-agnostic miscibility prediction of the pharmaceutical surfactants, Vitamin E TPGS and Tween 80, with Copovidone VA64 polymer at temperature relevant for the pharmaceutical hot melt extrusion process. The computations were performed in lieu of running exhaustive hot melt extrusion experiments to identify surfactant-polymer miscibility limits. The computing scheme involved a massively parallelized architecture for molecular dynamics and free energy perturbation from which binodal, spinodal, and mechanical mixture critical points were detected on molar Gibbs free energy profiles at 180 °C. We established tight agreement between the computed stability (miscibility) limits of 9.0 and 10.0 wt% vs. the experimental 7 and 9 wt% for the Vitamin E TPGS and Tween 80 systems, respectively, and identified different destabilizing mechanisms applicable to each system. This paradigm supports that computational stability prediction may serve as a physically meaningful, resource-efficient, and operationally sensible digital twin to experimental screening tests of pharmaceutical systems. This approach is also relevant to amorphous solid dispersion drug delivery systems, as it can identify critical stability points of active pharmaceutical ingredient/excipient mixtures.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polisorbatos / Excipientes Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polisorbatos / Excipientes Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Suiza